People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Chia-Jyi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+
Abstract
Misfit-layered oxides Ca3−xLnxCo4O9+ with Ln = Dy, Er, Ho, and Lu were synthesized using solid state reactions. The resulting samples were hot-pressed (HP) at 1123K in air for 2 h under a uniaxial pressure of 60 MPa. Thermoelectric properties of Ca3−xLnxCo4O9+ı were investigated up to 1200 K. Both the Seebeck coefficient and electrical resistivity increase upon Ln substitution for Ca. Among the Ln-doped samples, the magnitude of Seebeck coefficient tends to increase with decreasing ionic radius of Ln3+. The Ln-doped samples exhibit a lower thermal conductivity than the non-doped one due to a decrease of their lattice thermal conductivity. The dimensionless figure of merit, ZT, reaches 0.36 at 1073K for the Ca2.8Lu0.2Co4O9+ sample, which is about 1.6 times larger than that for the non-doped counterpart.<br/> Keyword: Thermoelectric materials; Oxide materials; Solid state reactions; Thermoelectrics