People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tao, Shuxia
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Probing the Reactivity of ZnO with Perovskite Precursorscitations
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductorscitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskites:A Tight-Binding Approachcitations
- 2023Effect of the Precursor Chemistry on the Crystallization of Triple Cation Mixed Halide Perovskitescitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskitescitations
- 2022Decomposition of Organic Perovskite Precursors on MoO 3 :Role of Halogen and Surface Defectscitations
- 2022Decomposition of Organic Perovskite Precursors on MoO3citations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites:Insights from Reactive Molecular Dynamics Simulations of CsPbI 3citations
- 2022Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principlescitations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskitescitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Bindingcitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3citations
- 2021Stretchable AgX (X = Se, Te) for Efficient Thermoelectrics and Photovoltaicscitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3:A Reactive Force Field Molecular Dynamics Studycitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding:GFN1-xTB Methodcitations
- 2020Dopant site in indium-doped SrTiO3 photocatalystscitations
- 2020Dopant site in indium-doped SrTiO 3 photocatalystscitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2019Absolute energy level positions in tin- and lead-based halide perovskitescitations
- 2019Efficient intraband hot carrier relaxation in Sn and Pb perovskite semiconductors mediated by strong electron-phonon couplingcitations
- 2018Efficient intraband hot carrier relaxation in the Perovskite semiconductor Cs1- xRbxSnI3 mediated by strong electron-phonon couplingcitations
- 2018Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskitescitations
- 2018Partially replacing Pb 2+ by Mn 2+ in hybrid metal halide perovskites:Structural and electronic propertiescitations
- 2018Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2018Probing the occupied and unoccupied density of states of hybrid Perovskites
- 2018Cs 1-: X Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2014Electron emission processes in photocathodes and dynodescitations
- 2011DFT studies of hydrogen storage properties of Mg0.75Ti0.25citations
- 2010Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powdercitations
- 2008Cubic MgH2 stabilized by alloying with transition metals : a density functional theory studycitations
Places of action
Organizations | Location | People |
---|
article
DFT studies of hydrogen storage properties of Mg0.75Ti0.25
Abstract
Absorption energies of hydrogen in Mg0.75Ti0.25 alloys as a function of the hydrogen concentration were calculated using Density Functional Theory. Four types of structures of alloys and their hydrides including TiAl3, ZrAl3, AuCu3, and segregated types of structures were considered. The stability of the configurations, and the structural and electronic bonding properties were studied. The hydrogenation properties depend highly on the structure of the alloys. The ordered alloys have very similar properties to that of pure Mg. For segregated alloys, the hydrogenation properties can be divided to Ti-like, ordered alloy-like and Mg-like from low to high hydrogen concentration. The formation energies show that for the four structures, segregated Mg0.75Ti0.25 is favored for alloys, whereas TiAl3 type of Mg0.75Ti0.25H2 are favored for hydrides. Therefore hydrogen induced structural rearrangement of the intermetallic structures of the Mg0.75Ti0.25 might occur upon hydrogen cycling. For the non-homogenous Mg–Ti–H system, further phase segregation of Ti in Mg might occur. Partial dehydrogenation with some hydrogen remaining in the Ti-rich region may improve reversibility