People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jamdade, Vinayak
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Fabrication of copper oxide multilayer nanosheets for supercapacitor application
Abstract
Copper oxide multilayer nanosheets thin films have been formed using simple and inexpensive chemical bath deposition (CBD) method. These films were characterized using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Fourier transform infrared spectrum (FTIR), optical absorption and wettability test. The XRD pattern revealed that the copper oxide films are amorphous. Formation of copper oxide compound was confirmed from the FTIR studies. The FESEM images revealed the development of hierarchical multilayer nanosheets which covered the substrate surface. Surface wettability with liquid interface showed hydrophilic nature with water contact angle 53°. The optical absorption showed existence of direct optical band gap of energy 2.18 eV. The supercapacitive properties of copper oxide thin film investigated in 1 M Na2SO4 electrolyte showed supercapacitance of 43 F g-1 at scan rate 10 mV s-1.