Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lohstroh, W.

  • Google
  • 7
  • 61
  • 164

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy12citations
  • 2020Metal (boro-) hydrides for high energy density storage and relevant emerging technologies70citations
  • 2010In-situ deposition of alkali and alkaline earth hydride thin films to investigate the formation of reactive hydride composites11citations
  • 2006The growth-induced microstructural origin of the optical black state of Mg 2 NiH x thin filmscitations
  • 2006The growth-induced microstructural origin of the optical black state of Mg 2 NiH x thin films22citations
  • 2006The growth-induced microstructural origin of the optical black state of Mg2NiHx thin films22citations
  • 2006Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation27citations

Places of action

Chart of shared publication
Holerer, O.
1 / 1 shared
Zamponi, M.
1 / 1 shared
Frick, B.
1 / 8 shared
Yildirim, Arda
1 / 6 shared
Schneider, G. J.
1 / 4 shared
Zorn, R.
1 / 3 shared
Krause, Christina
1 / 5 shared
Schönhals, Andreas
1 / 46 shared
Schreuders, H.
1 / 16 shared
Rougier, A.
1 / 1 shared
Gonzalez-Silveira, M.
1 / 5 shared
Dam, B.
4 / 29 shared
Dupont, L.
1 / 3 shared
Batyrev, E.
1 / 3 shared
Bardají, E. G.
1 / 1 shared
Van Setten, M. J.
1 / 3 shared
Gremaud, R.
1 / 7 shared
Kooi, B. J. Bart
1 / 3 shared
Notten, Phl Peter
1 / 18 shared
Westerwaal, R. J.
4 / 12 shared
Dam, Bernard
1 / 23 shared
Hopstaken, Mjp Marco
1 / 2 shared
Borgschulte, A.
4 / 14 shared
Brink, Gh Ten
1 / 3 shared
Notten, P. H. L.
2 / 30 shared
Kooi, B.
1 / 2 shared
Hopstaken, M. J. P.
2 / 3 shared
Ten Brink, G.
1 / 1 shared
Kooi, Bart Jan
2 / 74 shared
Ten Brink, Gert H.
2 / 32 shared
Fleischhauer, H. P.
1 / 1 shared
Griessen, R.
1 / 16 shared
Slaman, M.
1 / 8 shared
Broedersz, C. P.
1 / 8 shared
Borsa, D. M.
1 / 5 shared
Tschersich, K. J.
1 / 1 shared
Chart of publication period
2020
2010
2006

Co-Authors (by relevance)

  • Holerer, O.
  • Zamponi, M.
  • Frick, B.
  • Yildirim, Arda
  • Schneider, G. J.
  • Zorn, R.
  • Krause, Christina
  • Schönhals, Andreas
  • Schreuders, H.
  • Rougier, A.
  • Gonzalez-Silveira, M.
  • Dam, B.
  • Dupont, L.
  • Batyrev, E.
  • Bardají, E. G.
  • Van Setten, M. J.
  • Gremaud, R.
  • Kooi, B. J. Bart
  • Notten, Phl Peter
  • Westerwaal, R. J.
  • Dam, Bernard
  • Hopstaken, Mjp Marco
  • Borgschulte, A.
  • Brink, Gh Ten
  • Notten, P. H. L.
  • Kooi, B.
  • Hopstaken, M. J. P.
  • Ten Brink, G.
  • Kooi, Bart Jan
  • Ten Brink, Gert H.
  • Fleischhauer, H. P.
  • Griessen, R.
  • Slaman, M.
  • Broedersz, C. P.
  • Borsa, D. M.
  • Tschersich, K. J.
OrganizationsLocationPeople

article

The growth-induced microstructural origin of the optical black state of Mg2NiHx thin films

  • Notten, P. H. L.
  • Kooi, Bart Jan
  • Lohstroh, W.
  • Dam, B.
  • Hopstaken, M. J. P.
  • Westerwaal, R. J.
  • Ten Brink, Gert H.
  • Borgschulte, A.
Abstract

Hydrogen absorption by a thin Mg2Ni film capped with Pd results in the nucleation of the Mg2NiH4 phase at the film/substrate interface. On further hydrogenation, a self-organized two-layer system consisting of a Mg2NiH0.3/Mg2NiH4 bottom-layer and a Mg2NiH0.3 top-layer is formed. This leads to an intermediate optical black state in Mg2Ni thin films, which transforms from metallic/reflective to semiconducting/transparent upon hydrogenation. This hydrogen absorption behavior is completely unexpected, since the hydrogen enters the film through the Pd-capped film surface. To explain the preferential nucleation of Mg2NiH4 at the substrate/film interface, we determine the chemical homogeneity of these thin films by RBS and SIMS. Furthermore by STM, TEM and SEM, we analyze the microstructure. We find that up to a film thickness of 50 nm, the film consists of small grains and clusters of small grains. On further growth, a columnar structure develops. We propose that the nucleation barrier for the formation of the Mg2NiH4 phase is smaller for the small loosely packed grains at the interface, while the columnar grain boundaries promote the hydrogen diffusion to the substrate. (c) 2005 Elsevier B.V. All rights reserved.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • cluster
  • grain
  • nickel
  • phase
  • scanning electron microscopy
  • thin film
  • Magnesium
  • Magnesium
  • Hydrogen
  • transmission electron microscopy
  • selective ion monitoring
  • Rutherford backscattering spectrometry
  • scanning tunneling microscopy