Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kuball, C.-M.

  • Google
  • 2
  • 28
  • 97

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Review on mechanical joining by plastic deformation90citations
  • 2020Influence of the process temperature on the forming behaviour and the friction during bulk forming of high nitrogen steel7citations

Places of action

Chart of shared publication
Meschut, G.
1 / 17 shared
Jung, Robert O.
1 / 2 shared
Uhe, B.
1 / 2 shared
Merklein, M.
1 / 49 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Meschut, G.
  • Jung, Robert O.
  • Uhe, B.
  • Merklein, M.
OrganizationsLocationPeople

article

Influence of the process temperature on the forming behaviour and the friction during bulk forming of high nitrogen steel

  • Meschut, G.
  • Jung, Robert O.
  • Kuball, C.-M.
  • Uhe, B.
  • Merklein, M.
Abstract

Due to the trend towards lightweight design in car body development mechanical joining technologies become increasingly important. These techniques allow for the joining of dissimilar materials and thus enable multi-material design, while thermic joining methods reach their limits. Semi-tubular self-piercing riveting is an important mechanical joining technology. The rivet production, however, is costly and time-consuming, as the process consists of several process steps including the heat treatment and coating of the rivets in order to achieve an adequate strength and corrosion resistance. The use of high nitrogen steel as rivet material leads to the possibility of reducing process steps and hence increasing the efficiency of the process. However, the high tool loads being expected due to the high strain hardening of the material are a major challenge during the rivet production. Thus, there is a need for appropriate forming strategies, such as the manufacturing of the rivets at elevated temperatures. Prior investigations led to the conclusion that forming already at 200 °C results in a distinct reduction of the yield strength. To create a deeper understanding of the forming behaviour of high nitrogen steel at elevated temperatures, compression tests were conducted in a temperature range between room temperature and 200 °C. The determined true stress – true strain curves are the basis for the further process and tool design of the rivet production. Another key factor for the rivet manufacturing at elevated temperatures is the influence of the process temperature on the tribological conditions. For this reason, ring compression tests at room temperature and 200 °C are carried out. The friction factors are determined on the basis of calibration curves resulting from the numerical analysis of the ring compression process. The investigations indicate that the friction factor at 200 °C is significantly higher compared to room temperature. This essential fact has to be taken into account for the process and tool design for the rivet production using high nitrogen steel.

Topics
  • impedance spectroscopy
  • corrosion
  • Nitrogen
  • strength
  • steel
  • compression test
  • forming
  • yield strength
  • joining