Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Egizabal Luzuriaga, Ainhoa

  • Google
  • 2
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Particle emission measurements in three scenarios of mechanical degradation of polypropylene-nanoclay nanocomposites7citations
  • 2019On the pathway towards the standardization for exposure assessment throughout life cycle of nanocompositescitations

Places of action

Chart of shared publication
Gendre, Laura
2 / 7 shared
Lacave, José María
1 / 1 shared
Blazquez, Maria
2 / 7 shared
Marchante, Veronica
2 / 5 shared
Cajaraville, Miren
2 / 2 shared
Elizetxea Ezeiza, Cristina
2 / 2 shared
Starost, Kristof
2 / 9 shared
Njuguna, James
2 / 64 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Gendre, Laura
  • Lacave, José María
  • Blazquez, Maria
  • Marchante, Veronica
  • Cajaraville, Miren
  • Elizetxea Ezeiza, Cristina
  • Starost, Kristof
  • Njuguna, James
OrganizationsLocationPeople

article

Particle emission measurements in three scenarios of mechanical degradation of polypropylene-nanoclay nanocomposites

  • Gendre, Laura
  • Lacave, José María
  • Blazquez, Maria
  • Marchante, Veronica
  • Cajaraville, Miren
  • Elizetxea Ezeiza, Cristina
  • Starost, Kristof
  • Egizabal Luzuriaga, Ainhoa
  • Njuguna, James
Abstract

Researchers and legislators have both claimed the necessity to standardize the exposure assessment of polymer nanocomposites throughout their life cycle. In the present study we have developed and compared three different and independent operational protocols to investigate changes in particle emission behaviour of mechanically degraded polypropylene (PP) samples containing different fillers, including talc and two types of nanoclays (wollastonite-WO- and montmorillonite-MMT-) relative to not reinforced PP. Our results haveshown that the mechanical degradation of PP, PP-Talc, PP-WO and PP-MMT samples causes the release of nano-sized particles. However, the three protocols investigated, simulating industrial milling and drilling and household drilling, have produced different figures for particles generated. Results suggest that it is not possible to describe the effects of adding nano-sized modifiers to PP by a single trend that applies consistently across all different protocols. Differences observed might be attributed to a variety of causes, including the specific operational parameters selected for sample degradation and the instrumentation used for airborne particle release characterization. In particular, a streamlined approach for future assessments providing a measure for released particles as a function of the quantity of removed material would seem useful, which can provide a reference benchmark for the variations in the number of particles emitted across a wider range of different mechanical processes.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • grinding
  • milling