Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

López-Cámara, Claudia-Francisca

  • Google
  • 2
  • 5
  • 7

Eindhoven University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Relevance of C/O ratios in the gas-phase synthesis of freestanding few-layer graphene5citations
  • 2023Exploring the Si-precursor composition for inline coating and agglomeration of TiO2 via modular spray-flame and plasma reactor2citations

Places of action

Chart of shared publication
Fortugno, Paolo
2 / 2 shared
Schulz, Christof
1 / 4 shared
Wiggers, Hartmut
2 / 11 shared
Hagen, Fabian P.
1 / 4 shared
Dasgupta, Malini
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fortugno, Paolo
  • Schulz, Christof
  • Wiggers, Hartmut
  • Hagen, Fabian P.
  • Dasgupta, Malini
OrganizationsLocationPeople

article

Relevance of C/O ratios in the gas-phase synthesis of freestanding few-layer graphene

  • López-Cámara, Claudia-Francisca
  • Fortugno, Paolo
  • Schulz, Christof
  • Wiggers, Hartmut
  • Hagen, Fabian P.
Abstract

In microwave-plasma synthesis of few-layer graphene from hydrocarbon precursors, the carbon-to-oxygen and the carbon-to-hydrogen ratios are known to influence the product ratio of graphene to amorphous soot-like particles. While the role of oxygenated hydrocarbons and water as oxygen-supplying species has been studied before, in this paper, we compare the effect of carbon dioxide, molecular oxygen, and nitrous oxide mixed with ethylene to systematically change the C/O ratio while keeping the hydrogen supply constant. Ex situ powder analysis, emission spectroscopy, gas chromatography, and simple reaction kinetics simulations are employed to evaluate and describe the synthesis process. Additionally, thermophoretically sampled nanomaterials are collected close after the first particle inception and analyzed ex situ. The results show that molecular oxygen and nitrous oxide increase the graphene fraction with decreasing C/O ratios and pure graphene is reached at 2:1.5. The decrease in C/O ratio results in an overall decrease in solid carbon yield. With carbon dioxide, pure graphene cannot be generated at a C/O ration of 2:1.5, although a similar reduction of the particle yield is observed. Thermophoretic sampling showed that the specific mixture of carbon allotropes is already defined a few cm downstream to the plasma zone. Emission spectroscopy shows that carbon dioxide forms carbon species during its decomposition in the plasma, we hypothesize that these released carbon species might influence the environment for local nucleation of solid carbon. Thus, the C/O ratio and available carbon fraction for growth cannot always be used to tailor the carbon microstructure. Moreover, the source of oxygen atoms also seems to have an effect on the resultant microstructure.

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • Carbon
  • phase
  • simulation
  • Oxygen
  • Hydrogen
  • gas chromatography
  • decomposition