Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dirbeba, Meheretu Jaleta

  • Google
  • 4
  • 11
  • 55

Åbo Akademi University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Analytical and applied pyrolysis of challenging biomass feedstocks21citations
  • 2024Analytical and applied pyrolysis of challenging biomass feedstocks:Effect of pyrolysis conditions on product yield and composition21citations
  • 2023The effect of Cl, Br, and F on high-temperature corrosion of heat-transfer alloys7citations
  • 2021Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils6citations

Places of action

Chart of shared publication
Vinu, Ravikrishnan
2 / 2 shared
Tiwari, Mahendra
2 / 2 shared
Lehmusto, Juho
3 / 14 shared
Yrjas, Patrik
2 / 13 shared
Hupa, Leena
2 / 90 shared
Eriksson, Jan-Erik
1 / 3 shared
Silvander, Linus
1 / 1 shared
Lindberg, Daniel
1 / 24 shared
Bruun, Nina
1 / 4 shared
Hemming, Jarl
1 / 6 shared
Tesfaye, Fiseha
1 / 26 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Vinu, Ravikrishnan
  • Tiwari, Mahendra
  • Lehmusto, Juho
  • Yrjas, Patrik
  • Hupa, Leena
  • Eriksson, Jan-Erik
  • Silvander, Linus
  • Lindberg, Daniel
  • Bruun, Nina
  • Hemming, Jarl
  • Tesfaye, Fiseha
OrganizationsLocationPeople

article

Analytical and applied pyrolysis of challenging biomass feedstocks

  • Vinu, Ravikrishnan
  • Tiwari, Mahendra
  • Dirbeba, Meheretu Jaleta
  • Lehmusto, Juho
  • Yrjas, Patrik
Abstract

<p>Pyrolysis of challenging Indian and Finnish feedstocks, viz., rice straw, empty oil palm fruit bunch, pine bark, and birch bark, has been studied using analytical and applied pyrolysis reactors. Round-robin characterization of the feedstocks, including elemental analysis, proximate analysis, bomb calorimetry, and thermogravimetric analysis (TGA) was performed to generate robust data. Pyrolysis studies were carried out using an analytical micro pyrolyzer coupled with a gas chromatograph/mass spectrometer (Py-GC/MS), a single particle reactor (SPR), and a batch microwave pyrolysis reactor (MWP) to shed light on the influence of heating rate and mechanism on pyrolysis product yields and composition. The Py-GC/MS and SPR experiments were performed at 400, 500, and 600 °C, while the MWP experiments were carried out at 500 °C. The TGA results showed that the decomposition temperature regimes for the hemicellulose, cellulose, and lignin components of the biomasses overlapped to a certain extent. The condensable pyrolysis vapor (“bio-oil”) yields obtained from pyrolysis of the samples in the SPR reached a maximum at 500 °C. However, the pyrolysis char yield decreased, and the CO and CO<sub>2</sub> gas yields increased with temperature in the temperature range of 400–600 °C. The bio-oil yields obtained from the MWP at 500 °C were low, and the char and CO/CO<sub>2</sub> gas yields were high compared to the corresponding yields obtained from the SPR at the same temperature. The low bio-oil yields, and high biochar and CO/CO<sub>2</sub> gas yields from the MWP were attributed to the slow heating rate in the MWP. The Py-GC/MS analysis results revealed that the pyrolysates were mainly composed of linear and cyclic oxygenated hydrocarbons and phenolics. However, the bio-oils obtained from pyrolysis of the samples in the MWP mainly contained phenolics. The results of the present work indicate that differences in the chemical composition of the biomass feedstocks (especially in the content of alkali and alkaline earth metals), the heating rates and the heating mechanisms played a major role in determining the pyrolysis product yields and compositions.</p>

Topics
  • pyrolysis
  • experiment
  • mass spectrometry
  • chemical composition
  • thermogravimetry
  • lignin
  • cellulose
  • elemental analysis
  • calorimetry
  • surface plasmon resonance spectroscopy
  • pyrolysis gas chromatography
  • Alkaline earth metal