People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yrjas, Patrik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Analytical and applied pyrolysis of challenging biomass feedstockscitations
- 2024Analytical and applied pyrolysis of challenging biomass feedstocks:Effect of pyrolysis conditions on product yield and compositioncitations
- 2023Cold-end corrosion caused by hygroscopic ammonium chloride in thermal conversion of biomass and wastecitations
- 2021Formation of NH4Cl and its role on cold-end corrosion in CFB combustion
- 2021Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure timecitations
- 2020Application of bipolar electrochemistry to accelerate dew point corrosion for screening of steel materials for power boilerscitations
- 2018Experimental and modeling approaches to simulate temperature-gradient induced intradeposit chemical processes with implications for biomass boiler corrosion
- 2017The effect of temperature on the formation of oxide scales regarding commercial superheater steelscitations
- 2017The influence of flue gas temperature on lead chloride induced high temperature corrosioncitations
- 2017Causes of low-temperature corrosion in combustion of bituminous coal
- 2014Changes in Composition of Superheater Deposits due to Temperature Gradients
- 2012High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 2:Lab-scale corrosion tests and thermodynamic equilibrium modeling of ash and gaseous speciescitations
- 2011Performance of superheater materials in simulated oxy-fuel combustion conditions at 650°C
Places of action
Organizations | Location | People |
---|
article
Analytical and applied pyrolysis of challenging biomass feedstocks
Abstract
<p>Pyrolysis of challenging Indian and Finnish feedstocks, viz., rice straw, empty oil palm fruit bunch, pine bark, and birch bark, has been studied using analytical and applied pyrolysis reactors. Round-robin characterization of the feedstocks, including elemental analysis, proximate analysis, bomb calorimetry, and thermogravimetric analysis (TGA) was performed to generate robust data. Pyrolysis studies were carried out using an analytical micro pyrolyzer coupled with a gas chromatograph/mass spectrometer (Py-GC/MS), a single particle reactor (SPR), and a batch microwave pyrolysis reactor (MWP) to shed light on the influence of heating rate and mechanism on pyrolysis product yields and composition. The Py-GC/MS and SPR experiments were performed at 400, 500, and 600 °C, while the MWP experiments were carried out at 500 °C. The TGA results showed that the decomposition temperature regimes for the hemicellulose, cellulose, and lignin components of the biomasses overlapped to a certain extent. The condensable pyrolysis vapor (“bio-oil”) yields obtained from pyrolysis of the samples in the SPR reached a maximum at 500 °C. However, the pyrolysis char yield decreased, and the CO and CO<sub>2</sub> gas yields increased with temperature in the temperature range of 400–600 °C. The bio-oil yields obtained from the MWP at 500 °C were low, and the char and CO/CO<sub>2</sub> gas yields were high compared to the corresponding yields obtained from the SPR at the same temperature. The low bio-oil yields, and high biochar and CO/CO<sub>2</sub> gas yields from the MWP were attributed to the slow heating rate in the MWP. The Py-GC/MS analysis results revealed that the pyrolysates were mainly composed of linear and cyclic oxygenated hydrocarbons and phenolics. However, the bio-oils obtained from pyrolysis of the samples in the MWP mainly contained phenolics. The results of the present work indicate that differences in the chemical composition of the biomass feedstocks (especially in the content of alkali and alkaline earth metals), the heating rates and the heating mechanisms played a major role in determining the pyrolysis product yields and compositions.</p>