People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weiss-Hortala, Elsa
IMT Mines Albi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023The mechanisms of calcium-catalyzed graphenization of cellulose and lignin biochars uncoveredcitations
- 2022Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulosecitations
- 2022Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulosecitations
- 2021Impact of Atmosphere on Recovered Carbon Fibers From Poly Ether Ether Ketone (PEEK) Based Composites During Thermoconversioncitations
- 2019Physico-chemical properties of carbon fibers recycled by steam-thermolysis of PEEK matrix composites and composite wastes mixture
- 2019Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tarcitations
- 2019Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tarcitations
- 2018Recovery of carbon fibres from composite waste by hydrolysis in subcritical water
- 2018Advanced characterization unravels the structure and reactivity of wood-based charscitations
- 2018Advanced characterization unravels the structure and reactivity of wood-based charscitations
- 2017Recovery of carbon fibers from composite waste by solvolysis in subcritical water using a view cell reactor
- 2017IMPACT OF SUBCRITICAL AND SUPERCRITICAL WATER ON BOTH DEPOLYMERIZATION KINETICS OF NYLON 6 AND RECYCLING CARBON FIBERS FROM WASTE COMPOSITE
- 2017Impact of Solvolysis Process on Both Depolymerization Kinetics of Nylon 6 and Recycling Carbon Fibers from Waste Compositecitations
- 2016Impact of subcritical and supercritical water on both depolymerization kinetics of nylon 6 and recycling carbon fibers from waste composite
- 2016Experimental study of self-heating phenomena during torrefaction of spherical wood particles
- 2014Hydrothermal depolymerization of carbon-based composites
Places of action
Organizations | Location | People |
---|
article
Advanced characterization unravels the structure and reactivity of wood-based chars
Abstract
This study aims at understanding the structural changes occurring in the carbonaceous matrix of wood-based chars during their thermal conversion. Although chars are routinely characterized by porosity measurements or scanning electron microscopy, the composition and structure of the carbonaceous matrix is often not investigated. Here, advanced characterization using X-ray synchrotron microtomography, transmission electron microscopy, Raman spectroscopy and X-ray diffraction provided a precise description of the char properties, allowing for an accurate discussion of their catalytic properties. Two chars were produced by slow pyrolysis of wood waste (400 and 700 °C) and a third one was fabricated by activation under steam at 850 °C of the char obtained at 700 °C. The results show that the pyrolysis temperature and the activation performed did not affect the macrostructure of the chars and that the pores were interconnected at the macroscopic scale. However, at 700 °C, the micro- and nanostructures were modified: short-range organized graphene fringes were observed. The activated char showed a homogeneous microstructure similar to that of its precursor. Besides, the ratio of graphene-like structures, the local organization of graphene sheets, and the imperfections in graphene-like sheets were clearly improved by the post-treatment. To our knowledge, this is the first time that such an approach, combining various tools, is applied for the study of pyrolysis chars.