People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Águas, Hugo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Surface modification of halide perovskite using EDTA-complexed SnO2 as electron transport layer in high performance solar cellscitations
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2022Characterisation of Archaeological High-tin Bronze Corrosion Structurescitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatmentcitations
- 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cellscitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019Wave-optical front structures on silicon and perovskite thin-film solar cellscitations
- 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contactscitations
- 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cellscitations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cellscitations
- 2018The effects of argon and helium dilution in the growth of nc-Si: H thin films by plasma-enhanced chemical vapor depositioncitations
- 2017Flexible thin film solar cells on cellulose substrates with improved light managementcitations
- 2017Low-temperature spray-coating of high-performing ZnOcitations
- 2016Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealingcitations
- 2015Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formationcitations
- 2014Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectorscitations
- 2014Time-resolved luminescence studies of Eu3+ in soda-lime silicate glassescitations
- 2013Role of a disperse carbon interlayer on the performances of tandem a-Si solar cellscitations
- 2012Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)(3)citations
- 2008Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applicationscitations
- 2007Characterization of nickel induced crystallized silicon by spectroscopic ellipsornetry
- 2006Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devicescitations
- 2005Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHzcitations
- 2005Study of a-SiC : H buffer layer on nc-Si/a-Si : H solar cells deposited by PECVD technique.citations
- 2004Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application
- 2004Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si : H MIS photodiodes
- 2004Effect of the tunnelling oxide thickness and density on the performance of MIS photodiodescitations
- 2004Characterization of silicon carbide thin films prepared by VHF-PECVD technologycitations
- 2004Batch processing method to deposit a-Si
- 2002Metal-ferroelectric thin film devicescitations
- 2001Thin film metal oxide semiconductors deposited on polymeric substrates
- 2001Thin film metal oxide semiconductors deposited on polymeric substrates
- 2001Thin film position sensitive detectors based on pin amorphous silicon carbide structurescitations
- 2001Production and characterization of large area flexible thin film position sensitive detectorscitations
Places of action
Organizations | Location | People |
---|
article
Low-temperature spray-coating of high-performing ZnO
Abstract
<p>Ultrasonic spray pyrolysis deposition of ZnO-based materials offers an attractive high-throughput low-cost route towards industrial production of high-quality transparent conductive oxide (TCO) thin-films. In this work, undoped and aluminium-doped ZnO films have been grown employing ultrasonic spray pyrolysis at relatively low-temperate (300 °C), followed by a post-annealing treatment. The role of Al concentration in the starting solution, as well as the rapid thermal annealing (RTA) atmosphere, were investigated and correlated to the morphological, structural, electrical and optical properties of the films. The remarkable enhancement of electrical conductivity attained here is mainly ascribed to the combined effects of: (1) homogenous incorporation of Al<sup>3+</sup> into the ZnO matrix, which enhances crystal quality providing higher electronic mobility; and (2) the RTA which releases the localized electrons caused by oxygen absorption and thereby increases the free carrier density. Under optimum deposition conditions, a low resistivity and a high optical transmittance around 4 × 10<sup>−3</sup> Ω cm and 87%, respectively, were obtained. The application of the RTA post-process after low temperature growth has several advantages relative to the direct growth at high temperature (usually 400–575 °C), such as shorter growth time and lower cost associated to the spray pyrolysis equipment requirements and usage. The results suggest that the electrical and optical properties of the ZnO:Al films can be further improved for solar cell applications by controlling the temperature of the post-deposition annealing in reducing atmosphere.</p>