Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Larraín, T.

  • Google
  • 1
  • 2
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Structure-reactivity relationship in pyrolysis of plastics. A comparison with natural polymers17citations

Places of action

Chart of shared publication
Carrier, Marion
1 / 6 shared
Radović, L. R.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Carrier, Marion
  • Radović, L. R.
OrganizationsLocationPeople

article

Structure-reactivity relationship in pyrolysis of plastics. A comparison with natural polymers

  • Carrier, Marion
  • Radović, L. R.
  • Larraín, T.
Abstract

Recent advances in plastics recycling confirm the high potential of pyrolysis technologies to enhance recovery and selectivity rates. Modelling the kinetics of this complex process to stimulate scaling-up opportunities remains a major challenge.This study is an attempt to develop practical quantitative reactivity indices for the pyrolysis of natural and synthetic polymers. Representative samples from both categories (coal and pine vs. PET, PE and PMMA) were selected. Their weight loss during pyrolysis was determined experimentally and analyzed using judicious lumping procedures for its initiation, propagation and termination steps. The combined experimental and theoretical approach allowed us to determine apparent activation energies using the isoconversional Friedman method; and the use of Benson’s group contribution method generated reaction enthalpies for the initiation reactions. Increasing activation energies with conversion in each case indicated that bond scission proceeds in order of increasing bond strength. The greater chemical complexity of natural polymers was reflected in the higher coefficients of variability for activation energy and wider ranges of reaction enthalpies. A structure-reactivity relationship based on the Evans-Polanyi theory was used to test the hypothesis that primary pyrolysis kinetics is controlled by cleavage of weakest chemical bonds. While the results show that this approach is promising, especially if confirmed by extension to a larger data set, they also suggest the need to compare the relative kinetic importance of initiation and propagation steps in the sequence of polymer pyrolysis reactions.

Topics
  • pyrolysis
  • impedance spectroscopy
  • polymer
  • theory
  • strength
  • activation