Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moodley, H.

  • Google
  • 3
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Low-cycle fatigue behaviour and strain-life model of stainless steel reinforcing bars1citations
  • 2024Low-cycle fatigue behaviour and strain-life model of stainless steel reinforcing bars1citations
  • 2024Testing and numerical modelling of circular stainless steel reinforced concrete columns6citations

Places of action

Chart of shared publication
Afshan, Sheida
2 / 34 shared
Risi, R. De
1 / 1 shared
De Risi, R.
1 / 2 shared
Afshan, S.
1 / 14 shared
Crump, D.
1 / 1 shared
Kashani, Mohammad Mehdi
1 / 17 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Afshan, Sheida
  • Risi, R. De
  • De Risi, R.
  • Afshan, S.
  • Crump, D.
  • Kashani, Mohammad Mehdi
OrganizationsLocationPeople

article

Low-cycle fatigue behaviour and strain-life model of stainless steel reinforcing bars

  • Moodley, H.
  • Afshan, Sheida
  • Risi, R. De
Abstract

Reinforced concrete (RC) structures, often subjected to repeated static and dynamic loadings, are prone to fatigue failure of their steel reinforcing bars (rebar), which is worsened by corrosion in high chloride concentration service environments. Stainless steel rebars have gained increasing attention in recent years as a promising alternative to traditional carbon steel rebars to overcome chloride-induced corrosion, with life cycle costs and life cycle analyses affirming their sustainability and economic benefits. This paper reports the results of a pioneering series of 125 low-cycle high-amplitude fatigue tests on 12 mm hot-rolled and cold-rolled austenitic EN 1.4301 and 16 mm hot-rolled duplex EN 1.4482 stainless steel reinforcing bars as well as B500C 12 mm and 16 mm carbon steel reinforcing bars under different strain amplitudes 1%−5% and different bar length-to-diameter ratios 5–15. Strain-life models in the form of Coffin-Manson and Koh-Stephen relationships were developed and calibrated based on the low-cycle fatigue test data. Furthermore, empirical relationships relating the rebar slenderness to the ductility coefficient and exponent of the strain-life models were presented. An increase in both the slenderness and strain amplitude was found to reduce the fatigue life for all tested rebar materials. The hot-rolled stainless steel rebars exhibited superior fatigue performance in terms of fatigue life and energy dissipation than B500C carbon steel rebars. For the stainless steel rebars, cold-rolling was found to reduce the fatigue life. However, the cold-rolled stainless steel rebars of the smallest tested slenderness were still found to have comparable fatigue performance as the carbon steel rebars.

Topics
  • impedance spectroscopy
  • Carbon
  • stainless steel
  • corrosion
  • fatigue
  • ductility