Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esmailzade, Mina

  • Google
  • 2
  • 2
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Splitting tensile strength of recycled tire steel fiber-reinforced alkali-activated slag concrete designed by Taguchi method17citations
  • 2022Effect of impurities of steel fibers extracted from shredded tires on the behavior of fiber-reinforced concrete10citations

Places of action

Chart of shared publication
Aslani, Farhad
2 / 71 shared
Eskandarinia, Milad
2 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Aslani, Farhad
  • Eskandarinia, Milad
OrganizationsLocationPeople

article

Effect of impurities of steel fibers extracted from shredded tires on the behavior of fiber-reinforced concrete

  • Aslani, Farhad
  • Esmailzade, Mina
  • Eskandarinia, Milad
Abstract

<p>Production of ductile and environmentally-friendly concrete is a dream come true thanks to the combined usage of recycled fibers and pozzolanic materials in the concrete mixture. The raw recycled steel fibers (RSF) stemmed from shredding waste tires underwent a process of preparation. Secondary products of tire-shredding technique, including recycled steel cords, rubber-attached fibers, tiny steel fibers, and free form of rubber particles, were recognized and removed from raw RSF sample, changing its status from impure to pure. The primary target of this study was to evaluate the contribution of RSF purification to the engineering properties of concrete containing 30% slag powder by weight of the total binder. Based on the results, purifying RSF negatively affected the ultrasonic pulse velocity and led to a less workable mixture with inferior compressive strength (f<sub>c</sub>). Interestingly, the highest f<sub>c</sub> was attained at 1% impure RSF, indicating a 40% enhancement compared to the plain concrete. The positive effect of RSF purification became visible considering the imperviousness and flexural performance of the mixture. However, a similar impure and pure RSF-reinforced concrete flexural strength could be achieved by doubling the volume of the impure RSF.</p>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • strength
  • steel
  • flexural strength
  • ultrasonic
  • rubber