People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhu, Sp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Fatigue performance prediction of S235 base steel plates in the riveted connectionscitations
- 2020Multiaxial fatigue assessment of S355 steel in the high-cycle region by using Susmel's criterioncitations
- 2020Recent advances on notch effects in metal fatigue: A reviewcitations
- 2019Probabilistic modeling of fatigue life distribution and size effect of components with random defectscitations
- 2018Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effectscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue performance prediction of S235 base steel plates in the riveted connections
Abstract
Although several old riveted bridges served more than 100-150 years in the world, some of them are still in the application, generally limited by the economic budget or cultural relic protection reason. Hence, the status of those bridges needed to be evaluated to support the bridge management and rehabilitation, especially with the increasing traffic flow along with their service life. Nowadays, fatigue detail class 71 in the EN 1993-1-9 is generally recommended to evaluate the fatigue behaviour of the riveted joints. But the predicted fatigue behaviour of riveted connection using the recommended S-N curves is excessive conservative because the differences of connection geometries and materials are not fully considered using the global nominal stress methods. Therefore, in this paper, a two-phase fatigue performance approach based on local strain and Paris law, respectively, fatigue crack initiation and propagation phases, combined with numerical simulation, is an effective surrogate method to predict the fatigue performance of riveted connections, considering the material and geometry effects. A good agreement is observed when compared to numerical simulation with experimental observations.