Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Patel, Vipul

  • Google
  • 3
  • 7
  • 129

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Finite element simulation of circular short CFDST columns under axial compression55citations
  • 2018Experimental tests and design of rubberised concrete-filled double skin circular tubular short columns63citations
  • 2017Analysis and design of demountable embedded steel column base connections11citations

Places of action

Chart of shared publication
Karrech, Ali
2 / 3 shared
Hassanein, Mostafa Fahmi
2 / 2 shared
Elchalakani, Mohamed
2 / 8 shared
Yang, Bo
2 / 20 shared
Uy, Brian
1 / 4 shared
Li, Dongxu
1 / 1 shared
Aslani, Farhad
1 / 71 shared
Chart of publication period
2019
2018
2017

Co-Authors (by relevance)

  • Karrech, Ali
  • Hassanein, Mostafa Fahmi
  • Elchalakani, Mohamed
  • Yang, Bo
  • Uy, Brian
  • Li, Dongxu
  • Aslani, Farhad
OrganizationsLocationPeople

article

Finite element simulation of circular short CFDST columns under axial compression

  • Karrech, Ali
  • Hassanein, Mostafa Fahmi
  • Elchalakani, Mohamed
  • Yang, Bo
  • Patel, Vipul
Abstract

Circular <i>concrete-filled double-skin tubular</i> (CFDST) columns increase considerably the displacement ductility and peak strength of the sandwiched concrete due to the confinement provided by the steel tubes. This study describes the characteristics of short CFDST columns under compression and investigates the influences of the sandwiched concrete thickness, the yield stress of outer tube, tube thickness of the both outer and inner components and sandwiched concrete strength on the structural performance of circular short CFDST columns. To obtain the structural behaviour of circular CFDST columns, a finite element analysis is conducted. In this numerical modelling, the choice of the concrete and steel material properties is essential. Accordingly, different steel and concrete models are adapted from previous researches, and then they are verified by comparing their results with the experimental results. The best material models are presented and used in the parametric study which aims at examining the effects of several factors on the load-displacement relationships of the CFDST columns.

Topics
  • impedance spectroscopy
  • simulation
  • strength
  • steel
  • ductility
  • finite element analysis