People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grégoire, Benjamin
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Resistance of slurry aluminide coatings on pure nickel under different sulphidizing/Hot corrosion conditions at 700 °Ccitations
- 2023Effect of chromium and silicon additions on the hot corrosion resistance of nickel aluminide coatingscitations
- 2021Improving the corrosion resistance of ferritic-martensitic steels at 600 °C in molten solar salt via diffusion coatingscitations
- 2021Corrosion performance of slurry aluminide coatings in molten NaCl–KClcitations
- 2020Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part I: NaCl–KCl binary systemcitations
- 2020Long-term corrosion behavior of Cr diffusion coatings on ferritic-martensitic superheater tube material X20CrMoV12-1 under conditions mimicking biomass (co-)firingcitations
- 2020High Temperature Oxidation of Slurry Aluminized Deformable Austempered Ductile Iron (DADI)citations
- 2019Development of a new slurry coating design for the surface protection of gas turbine componentscitations
- 2019Mechanisms of formation of slurry aluminide coatings from Al and Cr microparticlescitations
- 2019Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700 °Ccitations
- 2019Dissolution and passivation of aluminide coatings on model and Ni-based superalloycitations
- 2019Scale Formation and Degradation of Diffusion Coatings Deposited on 9% Cr Steel in Molten Solar Saltcitations
- 2018Mechanisms of hot corrosion of pure nickel at 700°C: Influence of testing conditionscitations
- 2017Oxidation performance of repaired aluminide coatings on austenitic steel substratescitations
- 2017Reactivity of Al-Cr microparticles for aluminizing purposescitations
- 2016Influence of the oxide scale features on the electrochemical descaling and stripping of aluminide coatingscitations
Places of action
Organizations | Location | People |
---|
article
Reactivity of Al-Cr microparticles for aluminizing purposes
Abstract
Despite the extensive use of Al-Cr mixtures to aluminize metal substrates, little is known on the reactivity between Al and Cr to control the aluminizing activity. In this work, Al and Cr reactivity was investigated by DSC from Al and Cr microparticles. The exothermic and endothermic reactions which occur upon heating mixtures of Al and Cr powders were identified. A highly exothermic reaction was observed for different Al-Cr compositions at a temperature of 637 ± 2°C and was associated with the formation of AlxCry intermetallic compounds. The intensity of this reaction (heat flow) was found to be dependent on the initial Al-Cr ratio. Three Al-Cr compositions were selected from DSC tests and literature for slurry aluminizing. These compositions were deposited by slurry on pure Ni substrate to investigate the role of Cr on aluminizing by comparison with a conventional simple Al slurry coating. The addition of Cr was found to decrease the Al activity on the surface by forming AlxCry intermetallic compounds that limited the SHS reactions usually observed, between Ni and Al during high-activity slurry processes. The synthesized AlxCry intermetallic phases then behaved as masteralloys, for a single step aluminizing process at high temperature to promote the outward diffusion of Ni.