People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aslam, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentialscitations
- 2024Optimizing electroactive membrane performance for microalgae harvesting
- 2023Resonant sandwich-structured piezoelectric cantilever for volatile alcohol level monitoring
- 2023Fabrication of ternary metal oxide (ZnO:NiO:CuO) nanocomposite heterojunctions for enhanced photocatalytic and antibacterial applicationscitations
- 2023Fabrication of CNTs-reinforced poly(vinyl alcohol) nanocomposite film with tailored structural, surface chemical and optical propertiescitations
- 2022A brief review on the spin valve magnetic tunnel junction composed of 2D materialscitations
- 2021Experimental validation of bulk-graphene as a thermoelectric generatorcitations
- 2015Sunlight induced formation of surface Bi2O4-x-Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenolcitations
Places of action
Organizations | Location | People |
---|
article
Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentials
Abstract
<p>In the present study, nano-catalysts such as (purified CdS, S-g-C<sub>3</sub>N<sub>4</sub>, 9 %Fe@CdS NPs, and 9 %Fe@CdS with 50 % S-g-C<sub>3</sub>N<sub>4</sub> nanocomposites) are created by the co-precipitation method. Thiourea was thermally decomposed to make Graphitic carbon nitride doped with sulphur. A distinct heterostructure emerged between Fe/CdS and Sulfur doped g-C<sub>3</sub>N<sub>4</sub> would result in a greater number of heterojunctions and more active areas to increase photocatalytic breakdown. The characterization techniques that were used include scanning electron microscope, EDX, XRD, Fourier transform Infrared, and UV–visible spectroscopy. The outcomes showed that iron infusion changed CdS's structural makeup. Using MB as a reference dye, the absorbance for photocatalytic oxidation behavior was measured using a UV–Vis spectrophotometer. Among the doped NPs, 9 percent Fe-doped CdS with 50 % S-doped g-C<sub>3</sub>N<sub>4</sub> removes 94 % Methylene Blue (MB) dye. According to the results, the MB dye color entirely vanished after three hours. Additionally, doped CdS and composite were studied for their antibacterial characteristics. The bactericidal activity of 9 percent Fe-doped CdS with 50 percent SCN was exceptional. The standard (BHA) at the same concentration shows an inhibition value, IC<sub>50</sub> value = 44.2 ± 0.24 μM while for 9 % Fe-doped CdS nanocomposite with SCN, the DPPH scavenging activity was inhibited potently (IC50 value = 59.8.5 0.78 μM). SCN incorporation resulted in increased surface area of the composite and decreased e-/h + pair recombination.</p>