Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roostazadeh, Raheleh

  • Google
  • 1
  • 2
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Isolation and characterization of lignin-rich particles as byproducts of bioethanol production from wheat straw to reinforce starch composite films24citations

Places of action

Chart of shared publication
Karimi, Keikhosro
1 / 3 shared
Behzad, Tayebeh
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Karimi, Keikhosro
  • Behzad, Tayebeh
OrganizationsLocationPeople

article

Isolation and characterization of lignin-rich particles as byproducts of bioethanol production from wheat straw to reinforce starch composite films

  • Karimi, Keikhosro
  • Roostazadeh, Raheleh
  • Behzad, Tayebeh
Abstract

<p>Bioethanol was produced from wheat straw by a concentrated alkali pretreatment at specific conditions with a yield of 88 g ethanol per 1 kg of dry straw. To economically improve the bioethanol production process and valorize residual waste, the lignin-rich solid waste particles were isolated from the pretreatment waste liquid and characterized, and finally employed to reinforce starch-based biodegradable film. The solid waste particles were characterized by chemical analysis, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As bioethanol byproducts, they have mainly contained 88 wt% lignin. The average diameter of the uniform spherical shape extracted particles was determined to be 160 nm by DLS and FESEM. The presence of syringyl and guaiacyl rings were conducted by FTIR. Due to their suitable mechanical performance and thermal resistance, the lignin nanoparticles were employed as reinforcement for green biodegradable starch films. To prepare films, suspensions containing starch, glycerol, and different concentrations of lignin (0–30 wt%) were molded by the solution casting process. The starch-lignin composite films were analyzed by mechanical tensile tests, crystallinity analysis, FESEM, and thermal analysis. From the results, it was found that by adding 20 wt% lignin particles, the tensile strength and modulus of the pure starch film were increased from 4.8 and 0.9–8 and 2.4 MPa which can be partially explained due to crystallinity enhancement of film from 29 % to 48.3 %. In addition, the thermal resistance and the hydrophilic property of the composite films were enhanced due to lignin nanoparticle presence. It can be concluded that the isolation of lignin nanoparticles as waste solid in bioethanol production could be considered as a promising stage in the sustainability of second-generation products from the bioethanol production process.</p>

Topics
  • nanoparticle
  • scanning electron microscopy
  • strength
  • composite
  • thermogravimetry
  • lignin
  • differential scanning calorimetry
  • casting
  • tensile strength
  • Fourier transform infrared spectroscopy
  • crystallinity
  • dynamic light scattering