People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nuez, Lucile
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Influence of defects on the tensile behaviour of flax fibres: Cellulose microfibrils evolution by synchrotron X-ray diffraction and finite element modellingcitations
- 2020Determinant morphological features of flax plant products and their contribution in injection moulded composite reinforcementcitations
- 2020The potential of flax shives as reinforcements for injection moulded polypropylene compositescitations
- 2019The use of flax shives as reinforcement in biocomposites
Places of action
Organizations | Location | People |
---|
article
The potential of flax shives as reinforcements for injection moulded polypropylene composites
Abstract
International audience ; Flax shives (FS) represent approximately 50 % in weight of dry flax stems, making it the main by-product of the flax scutching industry. Being an available and low-added value lignocellulosic resource, flax shives are an interesting candidate for thermoplastic composite reinforcement. In this study, raw flax shives were fragmented by knife milling using two grids of 500 and 250 μm respectively, while a third batch, with a targeted particle size below 50 μm, was obtained by an attrition beads mill. The fragmentation methods used do not modify the biochemical composition of FS but do reduce their crystallinity due to both crystalline cellulose allomorph conversion and amorphization. The poly-(propylene) and 4%-wt maleic anhydride modified poly-(propylene) injection moulded composites produced with these reinforcing materials have a maximum tensile strength that evolves linearly with particle aspect ratio after processing. The tensile Young’s modulus of the composites reinforced by coarser particles is 3268 ± 240 MPa, which is almost 90 % that obtained for a reference 1mm flax fibre reinforced composite. Furthermore, a basic micromechanical model was applied highlighting the reinforcing capacity of cell wall-like small tubular structures (e.g. flax shives). This study underlines the reinforcing potential of low-value by-product flax shives for value-added composite applications.