Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leconte, François

  • Google
  • 1
  • 8
  • 34

Université de Lorraine

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Modeling and prediction of devolatilization and elemental composition of wood during mild pyrolysis in a pilot-scale reactor34citations

Places of action

Chart of shared publication
Pétrissans, Mathieu
1 / 16 shared
Colin, Baptiste
1 / 4 shared
Silveira, Edgar
1 / 2 shared
Lin, Yu-Ying
1 / 1 shared
Chen, Wei-Hsin
1 / 2 shared
Lin, Bo-Jhih
1 / 2 shared
Pétrissans, Anélie
1 / 9 shared
Rousset, Patrick
1 / 16 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Pétrissans, Mathieu
  • Colin, Baptiste
  • Silveira, Edgar
  • Lin, Yu-Ying
  • Chen, Wei-Hsin
  • Lin, Bo-Jhih
  • Pétrissans, Anélie
  • Rousset, Patrick
OrganizationsLocationPeople

article

Modeling and prediction of devolatilization and elemental composition of wood during mild pyrolysis in a pilot-scale reactor

  • Pétrissans, Mathieu
  • Leconte, François
  • Colin, Baptiste
  • Silveira, Edgar
  • Lin, Yu-Ying
  • Chen, Wei-Hsin
  • Lin, Bo-Jhih
  • Pétrissans, Anélie
  • Rousset, Patrick
Abstract

Mild pyrolysis, operated at 200–300 °C in an inert atmosphere, is a promising technology to produce sustainable materials (i.e., heat treated woods for construction and building) and solid fuels (i.e., torrefied woods or biochars for combustion and gasification). To aid in process and reactor design, the aim of this work is to conduct thermal degradation kinetics of wood. A two-step kinetics model is developed to predict the elemental composition (C, H, and O) and devolatilization dynamics of wood materials during heat treatment in a pilot-scale reactor by kinetic analysis. A hardwood poplar (Populus nigra) and a softwood fir (Abies pectinata) sever as feedstock, and the experiments are carried out at 200–230 °C with a heating rate of 0.2 °C min−1 in a low-pressure environment (200 hPa). The predictions in the weight losses of the woods are in a good agreement with the experimental data. The evolutions of solids, volatiles, elements (C, H, and O), and the heating values of treated woods are further analyzed. The predictions suggest that the intermediate solid is the main product, and almost all the woods are converted when the treatment temperature is as high as 230 °C. The devolatilization process, which is responsible for the mass loss of wood, can be clearly identified, and the volatile liberation amounts from poplar and fir at 230 °C are 17.05 and 12.44 wt%, respectively. The predicted HHVs of treated woods from the empirical formula are between 19.62 and 20.55 MJ kg−1, and the enhancement factors at the end of treatment are between 1.01 and 1.07 which is close to torrefied wood after light torrefaction. During the treatment, the extents of decarbonization, dehydrogenation, and deoxygenation in fir are all smaller than those in poplar, resulting from the lower intensity of devolatilization in the former.

Topics
  • pyrolysis
  • impedance spectroscopy
  • experiment
  • combustion
  • wood
  • gasification