Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diez, María

  • Google
  • 1
  • 10
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Assessing the similarity of nanoforms based on the biodegradation of organic surface treatment chemicals6citations

Places of action

Chart of shared publication
Galvez, Elena Cerro
1 / 1 shared
Esponda, Maria Fernanda
1 / 1 shared
Svendsen, Claus
1 / 1 shared
Belinga-Desaunay-Nault, Marie France
1 / 1 shared
Jeliazkova, Nina
1 / 1 shared
Lynch, Iseult
1 / 14 shared
Matzke, Marianne
1 / 1 shared
Spurgeon, Dave
1 / 1 shared
Andres, Veronica Gonzalez
1 / 1 shared
Cross, Richard
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Galvez, Elena Cerro
  • Esponda, Maria Fernanda
  • Svendsen, Claus
  • Belinga-Desaunay-Nault, Marie France
  • Jeliazkova, Nina
  • Lynch, Iseult
  • Matzke, Marianne
  • Spurgeon, Dave
  • Andres, Veronica Gonzalez
  • Cross, Richard
OrganizationsLocationPeople

article

Assessing the similarity of nanoforms based on the biodegradation of organic surface treatment chemicals

  • Galvez, Elena Cerro
  • Esponda, Maria Fernanda
  • Svendsen, Claus
  • Belinga-Desaunay-Nault, Marie France
  • Jeliazkova, Nina
  • Lynch, Iseult
  • Matzke, Marianne
  • Spurgeon, Dave
  • Diez, María
  • Andres, Veronica Gonzalez
  • Cross, Richard
Abstract

<p>A substance may have one or more nanoforms, defined for regulatory purposes under EU chemicals legislation REACH based on differences in physicochemical properties such as size, shape, specific surface area and surface chemistry including coatings. To reduce the burden of testing each unique nanoform for the environmental risk assessment of nanomaterials, grouping approaches allow simultaneous assessment of multiple nanoforms. Nanoforms with initially different intrinsic properties, could still be considered similar if their environmental fate and effects can be demonstrated to be similar. One hypothesis to group nanoforms with different organic surface modifications is to use parameters linked to biodegradation of the organic surface. The hypothesis contends that nanoforms with a similar core chemistry, but different organic surface treatments may be grouped, if the surface treatment is likely to be lost through biodegradation rapidly upon entering an environmental compartment, such that it no longer modulates fate, exposure and toxicity of the nanoform. To implement grouping according to surface treatment biodegradability, a robust approach to measure the breakdown of particle surface treatments is needed. We present a tiered testing strategy to assess the biodegradation of organic surface treatments used with nanomaterials that can be implemented as part of an Integrated Approach to Testing and Assessment (IATA) for grouping based on surface treatment stability. The tiered approach consists of an initial pre-screening MT2 colorimetric carbon substrate utilisation assay, to provide a rapid assessment of coating degradation, and a second tier of testing using OECD Test Guideline 301F for assessing organic chemical biodegradability. Six common surface treatment substances are assessed using the tiered testing strategy to refine rules for escalating between tiers. Similarity assessment using absolute Euclidean distances and x-fold difference concluded that the Tier 1 assessment can be used as conservative binary screening for biodegradability (no false positive results in Tier 1), whilst for substances showing intermediate biodegradation (10–60% in OECD 301F, Tier 2), similarity assessments can be informative for grouping surface treatments not considered readily biodegradable. Further validation using higher tier tests (e.g., mesocosms) is needed to define acceptable limits of similarity between intermediately biodegradable substances, where differences in biodegradability of the surface coating lead to negligible differences in fate, behaviour and toxicity of the nanoforms, and this is critically discussed.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • toxicity