People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maoult, Yannick Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2022Numerical Simulation of Recycled PET Preforms Infrared Heating Including Force Convection Effect in the Industrial ISBM Ovens
- 2022Infrared heating modeling of recycled PET preforms in injection stretch blow molding processcitations
- 2021Effect of oxidation on spectral and integrated emissivity of Ti-6Al-4V alloy at high temperaturescitations
- 2018On the thermal sensitivity and resolution of a YSZ:Er 3+ /YSZ:Eu 3+ fluorescent thermal history sensorcitations
- 2018The role of microcrystalline structure on optical scattering characteristics of semi-crystalline thermoplastics and the accuracy of numerical input for IR-heating modelingcitations
- 2017A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplasticscitations
- 2017Industrial applications of the superplastic forming by using Infra-Red heatercitations
- 2017Novel erbia-yttria co-doped zirconia fluorescent thermal history sensorcitations
- 2016Experimental analysis on the coupled effect between thermo-optical properties and microstructure of semi-crystalline thermoplasticscitations
- 2016Infrared welding process on composite: Effect of interdiffusion at the welding interfacecitations
- 2016Infrared radiation applied to polymer processescitations
- 2016Titanium Superplastic Forming by Aurock: A Complete Integrated Solution from CAD File to Final Part
- 2016Identification of the temperature dependent relation between thermo-optical properties and morphology of semi-crystalline thermoplastics for thermoforming process
- 2016Effect of the developed temperature field on the molecular interdiffusion at the interface in infrared welding of polycarbonate compositescitations
- 2016Infrared Radiation applied to Blow Molding and thermoforming
- 2014Optimized sol–gel thermal barrier coatings for long-term cyclic oxidation lifecitations
- 2014Feasibility of luminescent multilayer sol-gel thermal barrier coating manufacturing for future applications in through-thickness temperature gradient sensingcitations
- 2013Innovative Superplastic Forming Based on In-Situ Infra-Red Sheet Heatingcitations
- 2012Superplastic forming of AZ31 magnesium alloy with controlled microstructurecitations
- 2011Infrared heating stage simulation of semi-transparent media (PET) using ray tracing methodcitations
- 2011Simulations of an Infrared Composite Curing Processcitations
- 2011Infrared curing simulations of liquid composites moldingcitations
- 2010Oxidation and spallation of FeCrAl alloys and thermal barrier coatings: in situ investigation under controlled temperature gradientcitations
- 2010Evolution de la microstructure et influence de la pollution atmosphérique lors de la mise en oeuvre d'une résine thermodurcissable
- 2010Advances in the field of new smart thermal barrier coatings
- 2008Direct obervations and analysis of the spallation of alumina scales grown on PM2000 alloycitations
- 2008TOWARDS SUPERPLASTIC FORMING OF AZ31 MAGNESIUM ALLOY WITH CONTROLLED MICROSTRUCTURE
- 2007Measurement of thermal contact resistance between the mold and the polymer for the stretch-blow molding processcitations
- 2004Experimental and numerical infrared heating of thermoplastic sheet during thermoforming process
- 20043D finite element modeling of the blow molding process
- 2003Heat conditioning modelling of thermoforming process: comparison with experiments
- 2003Modelling of infrared heating of thermoplastic sheet used in thermoforming processcitations
- 2002Infrared Heating Modeling of Thermoplastic Sheets in Thermoforming Process
- 2001Comparison between a numerical model and an experimental approach of preform infrared radiative heating-recent results
- 2001Recent Issues In Preform Radiative Heating Modelling
- 2001Comparison Between a Numerical Model and an Experimental Approach of Preform Infrared Radiative Heating – Recent Results
- 2000Analysis of influent parameters during infrared radiative heating of PET preform
Places of action
Organizations | Location | People |
---|
article
Infrared heating modeling of recycled PET preforms in injection stretch blow molding process
Abstract
Relatively recent citizen’s consciousness about plastic pollution forces industrial actors of packaging to re-invent their shaping processes and materials. Specifically, for plastic bottle industry shaping, classical Polyethylene Terephthalate (PET) material is little by little replaced by recycled PET (rPET). The change in material composition due to recycling loops leads to an inevitable adaptation of the Injection Stretch Blow Molding (ISBM) process used to shape bottles at a satisfactory production rate. Indeed, rPET contains contaminants which modify its optical properties, so the heating stage becomes material-dependent and unstable regarding the polymer supplier. The approach adopted in this article is to build a numerical model able to simulate the infrared heating of rPET preforms, sensitive enough to predict changes in temperature due to the recycling rate. To do so, the optical properties of 50% and 100% rPET are measured by spectrometry and implemented in the simulation. Thermal radiative heat transfer between infrared lamps and rPET preforms is simulated by ray tracing method using an in-house software so-called RAYHEAT. Then, the result of the infrared ray tracing computation is used as the input heat source for thermal simulation by commercial software COMSOL Multiphysic® in order to simulate the temperature distribution of the preform. The numerical results are then confronted to experimental ones obtained on a research Stretch Blow Molding pilot, instrumented with thermography. The results show that the temperature obtained at the end of a classical heating cycle of the 100% recycled grade is 8 °C higher than the virgin one. Also, simulations confirm that this difference is attributed to changes in optical properties. Finally, heating 100% rPET at a sufficient forming temperature is about 8% less energy consuming than for virgin PET.