People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Polyzos, Efstratios
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Analytical probabilistic progressive damage modeling of single composite filaments of material extrusioncitations
- 2023Stochastic semi-analytical modeling of reinforced filaments for additive manufacturingcitations
- 2023An Open-Source ABAQUS Plug-In for Delamination Analysis of 3D Printed Compositescitations
- 2023Mode I, mode II and mixed mode I-II delamination of carbon fibre-reinforced polyamide composites 3D-printed by material extrusioncitations
- 2023Extension–bending coupling phenomena and residual hygrothermal stresses effects on the Energy Release Rate and mode mixity of generally layered laminatescitations
- 2023Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Depositioncitations
- 2022Modeling elastic properties of 3D printed composites using real fiberscitations
- 2021Analytical model for the estimation of the hygrothermal residual stresses in generally layered laminatescitations
- 2021Delamination analysis of 3D-printed nylon reinforced with continuous carbon fiberscitations
- 2021Numerical modelling of the elastic properties of 3D-printed specimens of thermoplastic matrix reinforced with continuous fibrescitations
Places of action
Organizations | Location | People |
---|
article
Extension–bending coupling phenomena and residual hygrothermal stresses effects on the Energy Release Rate and mode mixity of generally layered laminates
Abstract
This article presents a novel analytical solution to the delamination problem of interface deformable generally layered (asymmetric and unbalanced) composite laminates. The governing equation describing the interface forces and moments is obtained for the reduced form of the first-order shear deformation theory of plates (FSDT) under plane strain assumptions and accounts for the extension–bending coupling phenomena and residual hygrothermal stresses, both of which have been neglected in the past. The interface forces and moments are included in a novel generalization of the J-integral which is used for the estimation of the Energy Release Rate (ERR). The analytical results of the ERR and the mode mixity exhibit a great agreement with the results of Finite Element (FE) models developed using the Cohesive Zone Method (CZM) and the Virtual Crack Closure Technique (VCCT) for a Double Cantilever Beam (DCB) test of a generally layered fibre metal laminate.