Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arne Girhammar, Ulf

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023On buckling of layered composite heavy columns—Effect of interlayer bonding imperfection6citations

Places of action

Chart of shared publication
Challamel, N.
1 / 4 shared
Atashipour, Rasoul
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Challamel, N.
  • Atashipour, Rasoul
OrganizationsLocationPeople

document

On buckling of layered composite heavy columns—Effect of interlayer bonding imperfection

  • Arne Girhammar, Ulf
  • Challamel, N.
  • Atashipour, Rasoul
Abstract

Buckling loads of partial composite columns under distributed axial loads is investigated in this paper for the first time. The interlayer interaction corresponding to the level of interfacial bonding imperfection in the layered heavy composite columns is formulated in the model by a shear slip/stiffness modulus. Governing differential equations and boundary equations are derived and represented in a general dimensionless form. A semi-analytical solution is applied to the governing buckling equations of the presented model using power-series technique to extract critical loads of partial composite columns. Five different classical end types are considered namely clamped–clamped (C-C), clamped-pinned (C-P), clamped-sliding (C-S), clamped-free (C-F) and pinned–pinned (P-P). Also, for two extreme cases of non-composite/zero-interaction and full-composite/perfectly-bonded layered columns, exact closed-form characteristic buckling equations are introduced. A convergence study is conducted to ensure stability of the applied power-series solution. It is demonstrated that the obtained buckling loads for partial composite columns with different end conditions approach those obtained from the exact closed-from solution for the full-composite extreme case when the interfacial shear modulus approaches infinity. Effect of imperfect bonding between the column layers and slip on critical buckling loads is investigated. It is shown that a more realistic model based on the partial composite interaction hypothesis predicts critical loads that are less than those based on idealized composite columns with perfect interfacial bonding.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • layered
  • composite
  • interfacial