People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knowles, David M.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavitiescitations
- 2024Productive Automation of Calibration Processes for Crystal Plasticity Model Parameters via Reinforcement Learningcitations
- 2024Calibration and surrogate model-based sensitivity analysis of crystal plasticity finite element models
- 2024Towards a Data-Driven Evolutionary Model of the Cyclic Behaviour of Austenitic Steels
- 2024Effect of grain boundary misorientation and carbide precipitation on damage initiationcitations
- 2023Exploring 3D X-Ray Diffraction Method to Validate Approaches in Materials Modelling
- 2022A method to extract slip system dependent information for crystal plasticity modelscitations
- 2022The effects of internal stresses on the creep deformation investigated using in-situ synchrotron diffraction and crystal plasticity modellingcitations
- 2021Comparing Techniques for Quantification of Creep Cavities
- 2021The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steelcitations
- 2021Evaluation of fracture toughness and residual stress in AISI 316L electron beam weldscitations
- 2020Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwellscitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020The role of grain boundary orientation and secondary phases in creep cavity nucleation of a 316h boiler headercitations
- 2019Effect of Plasticity on Creep Deformation in Type 316h Stainless Steel
- 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEMcitations
- 2018Influence of prior cyclic plasticity on creep deformation using crystal plasticity modellingcitations
- 2018Comparison of predicted cyclic creep damage from a multi-material weldment FEA model and the traditional r5 volume 2/3 weldment approach
Places of action
Organizations | Location | People |
---|
article
The effects of internal stresses on the creep deformation investigated using in-situ synchrotron diffraction and crystal plasticity modelling
Abstract
In this study we investigated the evolution of meso-scale internal stresses and those effects on local deformation behaviour during incremental plastic and creep deformation in type 316H stainless steel at 550 °C, using in-situ X-ray synchrotron diffraction and crystal plasticity modelling. Owing to the fast data accusation rate of synchrotron diffraction technique, for the first time, the transient behaviour of different grain families was captured during initial fast stress relaxation period of the displacement-controlled creep dwells. Significantly it is found that the evolution of internal stresses during time independent plastic deformation is distinct from that during time dependent creep deformation. During plastic deformation, lattice strains in the {3 1 1} grain family exhibit linear behaviour whereas during creep deformation it exhibits non-linear behaviour, instead the {1 1 1} grain family exhibit linear behaviour. A novel unified constitutive law was devised within crystal plasticity framework based on the theoretical physics; the model successfully predicts the macroscopic deformation behaviour as well as the distinction between the evolution of meso-scale internal stresses during plastic and creep deformation, therefore, correctly accounting for the effect of internal stresses generated during plastic deformation on the subsequent creep deformation. The validated model has elucidated the grain-neighbouring effects on individual grain deformations.