People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adhikari, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Unfolding the mechanical properties of buckypaper composites: nano- to macro-scale coupled atomistic-continuum simulationscitations
- 2022Towards a novel application of wastewater-based epidemiology in population-wide assessment of exposure to volatile organic compounds.citations
- 2021Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approachcitations
- 2021Voltage-dependent modulation of elastic moduli in lattice metamaterialscitations
- 2020Probing the Effective Young's Modulus of ‘Magic Angle’ Inspired Multi‐Functional Twisted Nano‐Heterostructurescitations
- 2019Probing the frequency-dependent elastic moduli of lattice materialscitations
- 2019Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic latticescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2017Stochastic mechanics of metamaterialscitations
- 2017Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical propertiescitations
- 2017Metamodel based high-fidelity stochastic analysis of composite laminatescitations
- 2016Free-vibration analysis of sandwich panels with randomly irregular honeycomb corecitations
- 2016Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansioncitations
- 2016Probabilistic analysis and design of HCP nanowirescitations
- 2016Pullout strength of graphene and carbon nanotube/epoxy compositescitations
- 2016Effective in-plane elastic properties of auxetic honeycombs with spatial irregularitycitations
- 2016Equivalent in-plane elastic properties of irregular honeycombs: an analytical approachcitations
- 2016Equivalent in-plane elastic properties of irregular honeycombscitations
- 2016Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite platescitations
- 2015Stochastic natural frequency of composite conical shellscitations
- 2010Nanocomposites with auxetic nanotubescitations
- 2010Vibration and symmetry-breaking of boron nitride nanotubescitations
- 2009Effective elastic mechanical properties of single layer graphene sheetscitations
Places of action
Organizations | Location | People |
---|
article
Voltage-dependent modulation of elastic moduli in lattice metamaterials
Abstract
<p>Two-dimensional lattices are ideal candidate for developing artificially engineered materials and structures across different length-scales, leading to unprecedented multi-functional mechanical properties which can not be achieved in naturally occurring materials and systems. Characterization of effective elastic properties of these lattices is essential for their adoption as structural elements of various devices and systems. An enormous amount of research has been conducted on different geometry of lattices to identify and characterize various parameters which affect the elastic properties. However, till date we can not control the elastic properties actively for a lattice microstructure, meaning that the elastic properties of such lattices are not truly programmable. All the parameters that control the effective elastic properties are passive in nature. After manufacturing the lattice structure with a certain set of geometric or material-based parameters, there is no room to modulate the properties further. In this article, we propose a hybrid lattice micro-structure by integrating piezo-electric materials with the members of the lattice for active voltage-dependent modulation of elastic properties. A bottom-up multi-physics based analytical framework leading to closed-form formulae is derived for hexagonal lattices to demonstrate the concept of active lattices. It is noticed that the Young's moduli are voltage-dependent, while the shear modulus and the Poisson's ratios are not functions of the applied voltage. Thus, the compound mechanics of deformation induced by external mechanical stresses and electric field lead to an active control over the Young's moduli as a function of voltage. Interestingly, it turns out that a programmable state-transition of the Young's moduli from positive to negative values with a wide range can be achieved in such hybrid lattices. The physics-based analytical framework for active modulation of voltage-dependent elastic properties on the basis of operational demands provide the necessary physical insights and confidence for potential practical exploitation of the proposed concept in various futuristic multi-functional structural systems and devices across different length-scales.</p>