Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Looij-Kleinendorst, Sandra M. Van De

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Micron-scale experimental-numerical characterization of metal-polymer interface delamination in stretchable electronics interconnects13citations

Places of action

Chart of shared publication
Maris, Marc P. F. H. L. Van
1 / 1 shared
Hoefnagels, Jpm Johan
1 / 71 shared
Gastaldi, Dario
1 / 6 shared
Vena, Pasquale
1 / 4 shared
Cattarinuzzi, Emanuele
1 / 2 shared
Fleerakkers, Rob
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Maris, Marc P. F. H. L. Van
  • Hoefnagels, Jpm Johan
  • Gastaldi, Dario
  • Vena, Pasquale
  • Cattarinuzzi, Emanuele
  • Fleerakkers, Rob
OrganizationsLocationPeople

article

Micron-scale experimental-numerical characterization of metal-polymer interface delamination in stretchable electronics interconnects

  • Maris, Marc P. F. H. L. Van
  • Hoefnagels, Jpm Johan
  • Gastaldi, Dario
  • Vena, Pasquale
  • Cattarinuzzi, Emanuele
  • Looij-Kleinendorst, Sandra M. Van De
  • Fleerakkers, Rob
Abstract

<p>Understanding the mechanical behavior and failure mechanisms of stretchable electronics is key in developing reliable and long-lasting devices. In this work a micron-scale stretchable system consisting of an aluminum serpentine patterned interconnect adhered to a polyimide substrate is studied. In-situ experiments are performed where the stretchable sample is elongated, while the surface topography is measured using a confocal microscope. From the resulting height profiles the microscopic three-dimensional deformations are extracted using an adaptive isogeometric digital height correlation algorithm. The displacement information is compared to realistic numerical simulations, in which the interface behavior is described by cohesive zone elements. It is concluded that despite fitting the traction separation law parameters, the model fails to correctly capture the distinct out-of-plane buckling (with magnitude of a few micron) of the interconnect. The model is updated with residual stresses resulting from processing and crystal plasticity induced behavior (decreased yield strength) in the aluminum layer, but both measures are not resulting in the experimentally observed deformations. Finally, mixed-mode cohesive zones are implemented, in which the properties are different in the shear and normal direction. After fitting the corresponding parameters to the experimental data, the model shows realistic in-plane and out-of-plane deformations. Also a predictive simulation for a different geometry results in the correct experimentally measured behavior. It is concluded that the aluminum-polyimide interface mode-angle dependency explains the observed microscopic failure mode of local delamination and buckle formation.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • simulation
  • aluminium
  • strength
  • plasticity
  • yield strength
  • crystal plasticity