People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davey, Keith
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2022Scaled cohesive zone models for fatigue crack propagationcitations
- 2022A Two-Experiment Approach to Scaling in Biomechanicscitations
- 2020Exact and inexact scaled models for hot forgingcitations
- 2018A computationally efficient cohesive zone model for fatiguecitations
- 2018Experimental investigation into finite similitude for metal forming processescitations
- 2017Frequency-Dependent Cohesive Zone Models for Fatiguecitations
- 2011Analytical solutions for vibrating fractal composite rods and beamscitations
- 2009Vertical twin roll casting process of Mg alloy with high aluminium contents
- 2007A solution methodology for contacting domains in pressure die castingcitations
- 2007Mechanical properties and metallugical qualities of magnesium alloy sheets manufactured by twin-roll castingcitations
- 2006Boundary element stress analysis for bi-metallic dies in pressure diecastingcitations
- 2006Boundary element stress analysis for copper-based dies in pressure die castingcitations
- 2006Bi-metallic dies for rapid die castingcitations
- 2006Experimental investigation into the thermal behavior of copper-alloyed dies in pressure die castingcitations
- 2005Effects of rolling condition on warm deep drawability of magnesium alloy sheets produced by twin-roll strip castingcitations
- 2004An Experimental Study Of the Pressure Die Casting Process
- 2004Forming Characteristics of cast magnesium alloy sheets manufactured by roll strip casting processcitations
- 2004Semi-solid manufacturing process of magnesium alloys by twin-roll castingcitations
- 2004An experimental study of the pressure die casting process
- 2003Mechanical properties of magnesium alloy sheets produced by semi-solid roll strip casting
- 2002The practicalities of ring rolling simulation for profiled ringscitations
- 2002The effect of vibration on surface finish for semisolid and cast componentscitations
- 2002A practical method for finite element ring rolling simulation using the ALE flow formulationcitations
- 2002Optimization for boiling heat transfer determination and enhancement in pressure die castingcitations
- 2001Novel cooling channel shapes in pressure die castingcitations
- 2001Efficient strategies for the simulation of railway wheel formingcitations
- 2000An experimental and numerical investigation into the thermal behavior of the pressure die casting processcitations
- 2000Determination of heat transfer coefficients using a 1-d flow model applied to irregular shaped cooling channels in pressure diecastingcitations
- 2000Predicting heat extraction due to boiling in the cooling channels during the pressure die casting processcitations
Places of action
Organizations | Location | People |
---|
article
Exact and inexact scaled models for hot forging
Abstract
Scaled experimentation continues to play a significant role in process, product design and testing for metallic components and products but for hot forging in particular is recognized to suffer pronounced scale effects with physical behaviour changing with scale. This paper is concerned with an assessment of a new scaling approach called finite similitude that has appeared in the recent literature and a new methodology for exact and inexact experimentation involving scaled experiments. Finite similitude is founded on the scaling of space itself and on a formulation that ensures that the governing physics (in transport form) remain invariant up to proportionality. Unfortunately, proportionality breaks down with scale and to account for this careful experimental design is needed. A question of some importance, which is addressed in this paper, is whether it is possible that physically different materials can exhibit similar mechanical behaviour at certain conditions? These are termed “scaled-material twins” if they are able to match the required material response to some degree of accuracy for those ranges of temperature and strain rates that are representative of forging processes. Presented in the paper is a methodology for selecting scaled-material twins and the quantification of errors involved and its effect on scaled experimentation. Trials with hot disc forgings of different materials and sizes are performed to highlight the difficulties associated with scaling but also to demonstrate that scaled experimentation is possible and if correctly designed offers measurable advantages.