Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Felter, Christian Lotz

  • Google
  • 4
  • 5
  • 26

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Parameter window for assisted crack tip flipping: Studied by a shear extended Gurson model7citations
  • 2019Micro-mechanics based cohesive zone modeling of full scale ductile plate tearing: From initiation to steady-state19citations
  • 2016Crack Tip Flipping Under Mode I/III Tearingcitations
  • 2016Crack Tip Flipping Under Mode I/III Tearingcitations

Places of action

Chart of shared publication
Nielsen, Kl
3 / 42 shared
Andersen, Rasmus Grau
1 / 5 shared
Jensen, Lasse Specht
1 / 1 shared
Specht Jensen, Lasse
1 / 1 shared
Nielsen, Kim Lau
1 / 3 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Nielsen, Kl
  • Andersen, Rasmus Grau
  • Jensen, Lasse Specht
  • Specht Jensen, Lasse
  • Nielsen, Kim Lau
OrganizationsLocationPeople

article

Micro-mechanics based cohesive zone modeling of full scale ductile plate tearing: From initiation to steady-state

  • Nielsen, Kl
  • Felter, Christian Lotz
  • Andersen, Rasmus Grau
Abstract

Ductile plate tearing, where the crack propagates multiple plate thicknesses, is targeted by the micro-mechanics based Gurson-Tvergaard-Needleman (GTN) model. The focus is on extracting detailed information on the fracture process that governs ductile crack initiation from a blunt pre-crack until the crack reaches steady-state propagation in order to enhance accuracy of the traditionally used cohesive zone traction-separation relations. The aim is to facilitate an accurate representation of the tearing process within the cohesive zone modeling framework as such simplistic models are largely exploited by engineers worldwide. Unfortunately, accuracy in the representation of crack propagation is often sacrificed for computation speed, but the present work allows correlating the cohesive zone modeling to a much more accurate, though computational expensive, micro-mechanics based (full 3D) model response. In the modeling of large-scale plate tearing, shell elements are typically employed to represent the engineering scale of the structure while the cohesive zone represents the micro-scale in terms of crack initiation and growth process. Thus, the cohesive zone essentially has to take over at the onset of the first localization (thinning far ahead of the crack tip). Calibration of the cohesive zone parameters has earlier been made in accordance with experimental observations such that the overall response of the system is well reproduced. But, the present work takes the calibration of the cohesive zone one step further and exploits details from a large-scale GTN model calculation. The goal is to match the response from the GTN model with the much less computation demanding cohesive zone modeling approach by incorporating knowledge of the loading history for individual cross-sections, in front of the pre-crack, through which the tearing crack propagates. The full 3D micro-mechanics based model set-up allows tracking of key parameters, such as peak traction and tearing energy, which goes into the cohesive traction-separation relation. The dependency on distance from the crack initiation site of the cohesive zone parameters is determined - from crack initiation to steady-state propagation - and followed up by a discussion on how to construct a traction-separation relation for ductile plate tearing.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • crack