Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pitangueira, Roque L. S.

  • Google
  • 2
  • 4
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Fracture analysis in plane structures with the two-scale G/XFEM method15citations
  • 2018Two-dimensional fracture modeling with the generalized/extended finite element method22citations

Places of action

Chart of shared publication
Barros, Felicio B.
2 / 2 shared
Malekan, Mohammad
2 / 14 shared
Silva, Leandro L.
1 / 1 shared
Penna, Samuel S.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Barros, Felicio B.
  • Malekan, Mohammad
  • Silva, Leandro L.
  • Penna, Samuel S.
OrganizationsLocationPeople

article

Fracture analysis in plane structures with the two-scale G/XFEM method

  • Pitangueira, Roque L. S.
  • Barros, Felicio B.
  • Malekan, Mohammad
Abstract

<p>Generalized or extended finite element method (G/XFEM) uses enrichment functions that holds a priori knowledge about the problem solution. These enrichment functions are mostly limited to two-dimensional problems. A well-established solution for problems without any specific types of analytically derived enrichment functions is to use numerically-build functions in which they are called global-local enrichment functions. These functions are extracted from the solution of boundary value problems defined around the region of interest discretized by a fine mesh. Such solution is used to enrich the global solution space through the partition of unity framework of the G/XFEM. Here it is presented a two-scale/global-local G/XFEM approach to model crack propagation in plane stress/strain and Reissner–Mindlin plate problems. Discontinuous functions along with the asymptotic crack-tip displacement fields are used to represent the crack without explicitly represent its geometries. Under the linear elastic fracture mechanics approach, the stress intensity factor (obtained from a domain-based interaction energy integral) can be used to either determine the crack propagation direction or propagation status, i.e., the crack can start to propagate or not. The proposed approach is presented in detail and validated by solving several linear elastic fracture mechanics problems for both plane stress/strain and Reissner–Mindlin plate cases to demonstrate its the robustness and accuracy.</p>

Topics
  • impedance spectroscopy
  • crack
  • two-dimensional