People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liao, W. H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Contact/impact modeling and analysis of 4D printed shape memory polymer beamscitations
- 2018Snap buckling of NiTi tubescitations
- 2017A robust hyper-elastic beam model under bi-axial normal-shear loadingscitations
- 2017A finite-strain constitutive model for anisotropic shape memory alloyscitations
- 2016Modeling and analysis of reversible shape memory adaptive panelscitations
- 2016A robust macroscopic model for normal-shear coupling, asymmetric and anisotropic behaviors of polycrystalline SMAscitations
- 2015SMA bellows as reversible thermal sensors/actuatorscitations
- 2015A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
- 2015Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinderscitations
Places of action
Organizations | Location | People |
---|
article
Snap buckling of NiTi tubes
Abstract
<p>The aim of this article is to model and analyze the buckling behaviors of NiTi-based moderately thick shape memory alloy (SMA) tubes with short, intermediate and long lengths. A robust three-dimensional constitutive model is implemented so that it is capable of realistic simulations of anisotropic martensitic transformation, reorientation of martensite variants and asymmetry in tension and compression in the finite-strain regime. The governing equations of equilibrium are derived based on the total Lagrangian description and discretized in a finite element framework. They are then solved using an elastic-predictor inelastic-corrector return mapping algorithm along with iterative Newton–Raphson and Riks techniques to trace the non-linear equilibrium path. Experimental result of a uniaxial tension–compression test performed on an NiTi tube is first simulated in a Gauss point level. It is shown that the present constitutive model replicates well the main features such as martensitic phase transformation in a smooth and gradual manner, strain hysteresis width, pseudo-elasticity and asymmetry in tension and compression. Afterwards, computational assessment of mechanical response of NiTi tubes under axial edge load is carried out and comparisons with available experimental data are made. Effects of radial geometric imperfection and length as well as finite-strain modeling are investigated, and their implications on the buckling behaviors of NiTi moderately thick tubes are put into evidence and conclusions are drawn. It is shown that increasing the length tube reduces the structural resistance so that buckling–unbuckling behavior of short NiTi moderately thick tubes changes to kinking phenomenon in intermediate tubes and finally results in a smooth snap-type buckling in long tubes. Finally, it is concluded that the finite-strain model implementing a displacement/force-controlled method and kinking consideration is able to replicate well the main buckling features observed in the experiments.</p>