People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krushynska, Anastasiia O.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Characterizing Dissipative Elastic Metamaterials Produced by Additive Manufacturingcitations
- 2023Analytical characterization of the dynamic response of viscoelastic metamaterialscitations
- 2022Hybrid machine-learning and finite-element design for flexible metamaterial wingscitations
- 2018Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterialscitations
- 2017Dissipative elastic metamaterials
- 2017Hierarchical bio-inspired dissipative metamaterials for low frequency attenuationcitations
- 2017The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modellingcitations
- 2017Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterialscitations
- 2016Multiscale mechanics of dynamical metamaterials
- 2016Visco-elastic effects on wave dispersion in three-phase acoustic metamaterialscitations
- 2014Towards optimal design of locally resonant acoustic metamaterialscitations
Places of action
Organizations | Location | People |
---|
article
The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modelling
Abstract
<p>Acoustic metamaterials are known as a promising class of materials interacting with acoustic and/or elastic waves. Band gap formation is one of the most spectacular phenomena that they exhibit. Different ways to broaden the attenuated frequency ranges are still being actively explored. It turns out that material damping through intrinsic viscoelastic material behaviour, if accurately tailored, may contribute to the enhancement of the performance of a properly designed acoustic metamaterial. In this study, a locally resonant acoustic metamaterial with periodic multicoated inclusions with viscoelastic layers is investigated. Multiple attenuation regimes obtained with the considered geometry are joined for a certain level of viscosity of the coating layer. The analysis is performed using a generalised Maxwell model, which allows for an accurate description of nonlinear frequency dependent elastic properties, and thus is widely used to model the behaviour of many polymeric materials in a realistic way. The study reveals that variation of the material parameters of the rubber coating with respect to frequency influences not only the position of the band gaps but also the effectiveness of the wave attenuation in the frequency ranges around the band gaps. (C) 2017 The Authors. Published by Elsevier Ltd.</p>