People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adhikari, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Unfolding the mechanical properties of buckypaper composites: nano- to macro-scale coupled atomistic-continuum simulationscitations
- 2022Towards a novel application of wastewater-based epidemiology in population-wide assessment of exposure to volatile organic compounds.citations
- 2021Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approachcitations
- 2021Voltage-dependent modulation of elastic moduli in lattice metamaterialscitations
- 2020Probing the Effective Young's Modulus of ‘Magic Angle’ Inspired Multi‐Functional Twisted Nano‐Heterostructurescitations
- 2019Probing the frequency-dependent elastic moduli of lattice materialscitations
- 2019Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic latticescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2017Stochastic mechanics of metamaterialscitations
- 2017Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical propertiescitations
- 2017Metamodel based high-fidelity stochastic analysis of composite laminatescitations
- 2016Free-vibration analysis of sandwich panels with randomly irregular honeycomb corecitations
- 2016Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansioncitations
- 2016Probabilistic analysis and design of HCP nanowirescitations
- 2016Pullout strength of graphene and carbon nanotube/epoxy compositescitations
- 2016Effective in-plane elastic properties of auxetic honeycombs with spatial irregularitycitations
- 2016Equivalent in-plane elastic properties of irregular honeycombs: an analytical approachcitations
- 2016Equivalent in-plane elastic properties of irregular honeycombscitations
- 2016Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite platescitations
- 2015Stochastic natural frequency of composite conical shellscitations
- 2010Nanocomposites with auxetic nanotubescitations
- 2010Vibration and symmetry-breaking of boron nitride nanotubescitations
- 2009Effective elastic mechanical properties of single layer graphene sheetscitations
Places of action
Organizations | Location | People |
---|
article
Equivalent in-plane elastic properties of irregular honeycombs
Abstract
<p>An analytical formulation has been developed in this article for predicting the equivalent elastic properties of irregular honeycombs with spatially random variations in cell angles. Employing unit-cell based approaches, closed-form expressions of equivalent elastic properties of regular honeycombs are available. Closed-form expressions for equivalent elastic properties of irregular honeycombs are very scarce in available literature. In general, direct numerical simulation based methods are prevalent for this case. This paper proposes a novel analytical framework for predicting equivalent in-plane elastic moduli of irregular honeycombs using a representative unit cell element (RUCE) approach. Using this approach, closed-form expressions of equivalent in-plane elastic moduli (longitudinal and transverse Young's modulus, shear modulus, Poisson's ratios) have been derived. The expressions of longitudinal Young's modulus, transverse Young's modulus, and shear modulus are functions of both structural geometry and material properties of irregular honeycombs, while the Poisson's ratios depend only on structural geometry of irregular honeycombs. The elastic moduli obtained for different degree of randomness following the proposed analytical approach are found to have close proximity to direct finite element simulation results.</p>