People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Legarth, Brian Nyvang
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Particle-matrix debonding with Strength-Differential effects
- 2024Temperature-dependent changes in thermoplastic sandwich core properties and failure mechanisms using four-point tests with short specimens
- 2024Mode-III fracture toughness measurements of foam-cored sandwich composites using a constrained Shear-Torsion-Bending specimen
- 2022A Modified Shear Torsion Bending Test for Mode-III Fracture Toughness Measurements of Face/Core Interfaces in Sandwich Composites
- 2022A special finite element method applied to off-axis tunnel cracking in laminatescitations
- 2022An efficient stiffness degradation model for layered composites with arbitrarily oriented tunneling and delamination crackscitations
- 2021Introduction to the finite element solid formulation
- 2021A novel test fixture for mode III fracture characterization of monolithic laminates and composite sandwich specimenscitations
- 2021Approach for analysing off-axis tunnelling cracks in biaxially loaded laminatescitations
- 2019Development of a Mode III Test Rig for Composite Laminates and Sandwich Face/Core Fracture Characterization
- 2015Plasticity dependent damage evolution in composites with strain-gradient effectscitations
- 2015Effect of fiber positioning on mixed-mode fracture of interfacial debonding in compositescitations
- 2015Effect of fiber positioning on mixed-mode fracture of interfacial debonding in compositescitations
- 2014A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional compositescitations
- 2014A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional compositescitations
- 2014A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional compositescitations
- 2014On the homogenization of metal matrix composites using strain gradient plasticitycitations
- 2013Experimental and numerical study of the micro-mechanical failure in composites
- 2013Experimental and numerical study of the micro-mechanical failure in composites
- 2013A deformation mechanism map for polycrystals modeled using strain gradient plasticity and interfaces that slide and separatecitations
- 2013Micromechanical modeling of unidirectional composites with uneven interfacial strengthscitations
- 2013Micromechanical modeling of unidirectional composites with uneven interfacial strengthscitations
- 2013A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructurecitations
- 2013Fracture of anisotropic materials with plastic strain-gradient effects
- 2012Debonding analyses in anisotropic materials with strain- gradient effects
- 2012Debonding Analyses in Anisotropic Materials with Strain-Gradient Effects
- 2011Size-effects on yield surfaces for micro reinforced compositescitations
- 2010Debonding failure and size effects in micro reinforced compositescitations
- 2005Effects of geometrical anisotropy on failure in a plastically anisotropic metal
- 2004Particle debonding using different yield criteriacitations
Places of action
Organizations | Location | People |
---|
article
Plasticity dependent damage evolution in composites with strain-gradient effects
Abstract
A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al. (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress-drop is seen in the macroscopic stress-strain response curve, which defines the failure strain of the composite. It is shown, that decreasing the value of the new cohesive material length parameter will monotonically decrease the failure strain. On the other hand, the material length scale parameter of the matrix affects the failure strain in a non-monotonic manner. Depending on the degree of anisotropy a maximum failure strain is predicted for a length scale corresponding to 10-15% of the reinforcement radius.