Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hazel, Andrew L.

  • Google
  • 3
  • 5
  • 42

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021A microstructural model of tendon failure.10citations
  • 2021A microstructural model of tendon failure10citations
  • 2012Homogenization methods to approximate the effective response of random fibre-reinforced Composites22citations

Places of action

Chart of shared publication
Shearer, Tom
2 / 6 shared
Gregory, James
2 / 2 shared
Parnell, William J.
1 / 21 shared
Abrahams, I. David
1 / 10 shared
Willoughby, Natasha
1 / 1 shared
Chart of publication period
2021
2012

Co-Authors (by relevance)

  • Shearer, Tom
  • Gregory, James
  • Parnell, William J.
  • Abrahams, I. David
  • Willoughby, Natasha
OrganizationsLocationPeople

article

Homogenization methods to approximate the effective response of random fibre-reinforced Composites

  • Hazel, Andrew L.
  • Parnell, William J.
  • Abrahams, I. David
  • Willoughby, Natasha
Abstract

In this article a fibre-reinforced composite material is modelled via an approach employing a representative volume element with periodic boundary conditions. The effective elastic moduli of the material are thus derived. In particular, the method of asymptotic homogenization is used where a finite number of fibres are randomly distributed within the representative periodic cell. The study focuses on the efficacy of such an approach in representing a macroscopically random (hence transversely isotropic) material. Of particular importance is the sensitivity of the method to cell shape, and how this choice affects the resulting (configurationally averaged) elastic moduli. The averaging method is shown to yield results that lie within the Hashin-Shtrikman variational bounds for fibre-reinforced media and compares well with the multiple scattering and (classical) self-consistent approximations with a deviation from the latter in the larger volume fraction cases. Results also compare favourably with well-known experimental data from the literature. © 2012 Elsevier Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • microstructure
  • composite
  • random
  • isotropic
  • homogenization