People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pasternak, Elena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Implication of Different Types of Post-peak Behaviour in Lateral Direction on Failure of Class II Rocks in Uniaxial Compressioncitations
- 2022Possible mechanism of spallation in rock samples under uniaxial compressioncitations
- 2019Effective properties of layered auxetic hybridscitations
- 2017Behavior of Extreme Auxetic and Incompressible Elastic Materialscitations
- 2017Extracting real-crack properties from non-linear elastic behaviour of rockscitations
- 2017Transitional negative stiffness and numerical modelling of failure of particulate material
- 2017Extracting shear and normal compliances of crack-like defects from pressure dependences of elastic-wave velocitiescitations
- 2016Wave propagation in materials with negative Cosserat shear moduluscitations
- 2016Deformation analysis of reinforced-core auxetic assemblies by close-range photogrammetrycitations
- 2016Thermal stresses in hybrid materials with auxetic inclusionscitations
- 2015Negative Poisson's ratio in hollow sphere materialscitations
- 2015Hybrid materials with negative Poisson's ratio inclusionscitations
- 2007Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elementscitations
- 2006Cracks of higher modes in Cosserat continuacitations
- 2004On the possibility of elastic strain localisation in a faultcitations
Places of action
Organizations | Location | People |
---|
article
Extracting shear and normal compliances of crack-like defects from pressure dependences of elastic-wave velocities
Abstract
<p>We present a differential formulation of effective-medium model in which the normal and shear compliances of the high-compliance porosity are explicitly decoupled. This feature of the decoupled-compliance model (DC model) is in contrast to conventional models in which such defect's properties are implicitly assumed and are subject to strong limitations defined by the used particular crack model. Comparison with the DC model makes it possible to reveal such implicit assumptions in the conventional models. Furthermore, for the conventional cracks, our approach gives the same results as the conventional models. The ability of the DC model to incorporate arbitrary defect properties in terms of their normal-to-shear compliance ratio (q-ratio) is used to formulate an analogue of Hashin-Shtrikman constraints on the range of feasible crack-induced variations in the moduli. Comparison of the DC model with experimental pressure dependences of elastic-wave velocities in rocks makes it possible to extract the q-ratio for real crack-like defects. These results demonstrate that properties of real cracks usually noticeably differ from those of popular crack models such as cracks with free faces (e.g., penny-shape) or pure shear cracks. We discuss an example of sandstone with pronouncedly negative Poisson's ratio that is due to the fact that the ratio of normal-to-shear compliances of voids in this rock (q similar to 7-8) is significantly higher than for the conventional cracks (q similar to 2). Ability of the DC model to accurately extrapolate pressure dependences of the moduli from relatively low pressures to several times greater is demonstrated, including the cases, for which the conventional models give huge errors. The introduced parameter q the ratio of normal-to-shear compliances of voids provides additional insight into properties of real crack-like defect in rocks.</p>