People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreirós, Pedro A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2023Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy
- 2023VNbCrMo refractory high-entropy alloy for nuclear applicationscitations
- 2023Chromium-based bcc-superalloys strengthened by iron supplementscitations
- 2022Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L21 ferritic superalloyscitations
- 2022Study of Microstructure, Hydrogen Solubility, and Corrosion of Ta-Modified Zr–1Nb Alloys for Nuclear Applicationscitations
- 2021Effects of thermo-mechanical process on phase transitions, hydrogen solubility and corrosion of Ta-modified Zr-1Nb alloyscitations
- 2020Accurate quantitative EDS-TEM analysis of precipitates and matrix in equilibrium (α+β) Zr–1Nb alloys with Ta additioncitations
- 2019Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloycitations
- 2018Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbono
- 2018High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimencitations
- 2018Zirconium alloys with improved corrosion resistance and service temperature for use in the fuel cladding and core structural parts of a nuclear reactor
- 2018Efecto de la sustitución de V por Ti sobre las temperaturas de transformación de fase y el desajuste de red matriz/precipitado en la superaleación 76Fe-12Al-12V
- 2017Impact toughness transition temperature of ferritic Fe-Al-V alloy with strengthening Fe2AlV precipitatescitations
- 2017Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloycitations
- 2014Characterization of microstructures and age hardening of Fe 1-2xAlxVx alloyscitations
Places of action
Organizations | Location | People |
---|
article
VNbCrMo refractory high-entropy alloy for nuclear applications
Abstract
<p>Refractory high-entropy alloys (RHEAs) with high melting points and low neutron absorption cross-section are sought for generation-IV fission and fusion reactors. A high throughput computational screening tool, Alloy Search and Predict (ASAP), was used to identify promising RHEA candidates from over 1 million four-element equimolar combinations. The selected VNbCrMo RHEA was further studied by CALPHAD to predict phase formation, which was compared to an experimentally produced ingot aged at 1200 °C. The VNbCrMo RHEA was found to constitute a majority bcc phase, with a 6% area fraction of C15-Laves formed at interdendritic regions, in contrast to the predictions of single-phase. The prediction of the yield strength by a model based upon edge dislocation mechanisms indicated 2.1 GPa at room temperature and 850 MPa at 1000 °C for the equimolar single bcc phase. The hardness of the alloy with C15-Laves was 748 HV (yield strength ∼2.4 GPa). Finally, the macroscopic neutron absorption cross-section was modelled for a wide range of energies. Displacements per atom per year and activation calculations, up to 1000 years after 2 years of continuous operation, in typical fusion and fission reactor scenarios were also performed using the inventory code FISPACT-II. This work gives new insight into the phase stability and performance of the VNbCrMo RHEA, which is compared with a similar design concept alloy, to assess the potential of novel RHEAs for use in advanced nuclear applications.</p>