People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gerold, Eva
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Development of a Dross Build-Up Growth Process Model for Hot-Dip Galvanizing Considering Surface Reaction Kineticscitations
- 2023Towards a sustainable approach using mineral or carboxylic acid to recover lithium from lithium iron phosphate batteriescitations
- 2023SeLiReco 2.0 - A more sustainable process for the recycling of lithium-ion batteries
- 2023Gluconic Acid Leaching of Spent Lithium-Ion Batteries as an Environmentally Friendly Approach to Achieve High Leaching Efficiencies in the Recycling of NMC Active Materialcitations
- 2022Studies on the phase formation of cobalt contacted with zinc vapourcitations
- 2021Decomposition of hydrogen peroxide in selected organic acids
Places of action
Organizations | Location | People |
---|
article
Studies on the phase formation of cobalt contacted with zinc vapour
Abstract
<p>In cemented carbides cobalt serves as a binding agent between tungsten carbide grains. The zinc process exhibits an important technique to recycle these materials. The decomposition takes place at temperatures of 900–1000 °C and the role of gaseous zinc in this process is poorly investigated. A specific experimental set-up was used to ensure that only gaseous zinc reacts with solid cobalt. By varying the temperatures, times and Zn:Co ratios, it was possible to ensure the formation of intermetallic phases. According to the binary Co[sbnd]Zn phase diagram, phases of different composition are formed, depending on temperature and pressure. It was found that not all of the indicated phases occur simultaneously, but several do. With the support of the findings from the layer evolution between two solid as well as solid and liquid substances, it is explained which layers may form in the Co[sbnd]Zn system. The multiple phase formation depends on diffusitivity and other factors such as the different melting points, the atomic radii and the occurrence of cracks. Of these, the occurrence of cracks across or between two layers represents the most likely reason.</p>