People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rieth, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (58/58 displayed)
- 2024Additive manufacturing of novel complex tungsten components via electron beam melting: Basic properties and evaluation of the high heat flux behavior
- 2024In-Situ synchrotron investigation of elastic and tensile properties of oxide dispersion strengthened EUROFER97 steel for advanced fusion reactorscitations
- 2024Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy
- 2024Tungsten alloys R&D program at KIT
- 2023Microstructural insights into EUROFER97 batch 3 steels
- 2023Effect of neutron irradiation on tensile properties of advanced Cu-based alloys and composites developed for fusion applications
- 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates
- 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminatescitations
- 2022Recent progress in the assessment of irradiation effects for in-vessel fusion materials: tungsten and copper alloyscitations
- 2021Microstructure and precipitation behavior of advanced RAFM steels for high-temperature applications on fusion reactorscitations
- 2021Impact of materials technology on the breeding blanket design – Recent progress and case studies in materials technologycitations
- 2021Technological Processes for Steel Applications in Nuclear Fusion
- 2021Additive manufacturing technologies for EUROFER97 components
- 2021Impact of materials technology on the breeding blanket design Recent progress and case studies in materials technologycitations
- 2020Elucidating the microstructure of tungsten composite materials produced by powder injection molding
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: the rate-limiting mechanism of plasticity controlling the BDT in ultrafine-grained tungstencitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlementcitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlementcitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: Contributions of grain and subgrain boundaries to the enhanced ductility after pre-deformation
- 2019Manufacturing, high heat flux testing and post mortem analyses of a W-PIM mock-upcitations
- 2019Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent
- 2019Mechanical properties and microstructure characterization of Eurofer97 steel variants in EUROfusion program
- 2019High pulse number thermal shock testing of tungsten alloys produced by powder injection moldingcitations
- 2018Expanding the operation window of RAFM steels by optimized chemical compositions and heat treatments
- 2018Expanding the operation window of RAFM steels by optimized chemical compositions and heat treatments
- 2017Processing of complex near-net-shaped tungsten parts by PIM
- 2017Ductilisation of tungsten (W): Tungsten laminated compositescitations
- 2017Production, microstructure and mechanical properties of two different austenitic ODS steelscitations
- 2017Assessment of industrial nitriding processes for fusion steel applicationscitations
- 2017Plasma exposure of tungsten in the linear plasma device PSI-2 produced via powder injection molding
- 2017Rapid material development and processing of complex near-net-shaped parts by PIM
- 2015Improvement of RAFM steels through thermo-mechanical treatments
- 2015Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection moldingcitations
- 2014Microstructural anisotropy of ferritic ODS alloys after different production routes
- 2014Virtuelle Material- und Prozessentwicklung am Beispiel der Konstrukturausbildung in Schweißnähten
- 2011Optimization and limitations of known DEMO divertor concepts
- 2011TEM study of mechanically alloyed ODS powder
- 2011Review on the EFDA programme on tungsten materials
- 2011Influence of thickness and notch on impact bending properties of pure tungsten plate material
- 2011Development of high performance materials for nuclear fusion power plants
- 2010Cost effective fabrication of a fail-safe first wall
- 2010Fracture behavior of tungsten materials and the impact on the divertor design in nuclear fusion power plants
- 2010Tungsten materials for structural divertor applications
- 2009Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications
- 2008Diffusion weld study for test blanket module fabrication
- 2008Impact bending tests on selected tungsten materials
- 2008Fracture behaviour of tungsten materials depending on microstructure and surface fabrication
- 2008Mechanical properties of different refractory materials for nuclear fusion applications
- 2007Specific welds for test blanket modules
- 2005Present development status of EUROFER and ODS-EUROFER for application in blanket concepts
- 2005A steady-state creep model for the AISI 316 L(N) in the technically relevant stress range
- 2005Evaluation of the mechanical properties of W and W-1%La₂O₃ in view of divertor applications
- 2005Creep and recrystallization of pure and dispersion strengthened tungsten
- 2005A comprising steady-state creep model for the austenitic AISI 316 L(N) steel
- 2005Microstructure and mechanical properties of different EUROFER welds
- 2005Assessment of different welding techniques for joining EUROFER blanket components
- 2005Verification and validation experiments for atomistic modeling of FeCr alloys
- 2004Creep of the austenitic steel AISI 316 L(N). Experiments and models
Places of action
Organizations | Location | People |
---|
article
The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement
Abstract
The high brittle-to-ductile transition (BDT) temperature of conventionally produced tungsten (W), challenges the design of W-based structural components. Recent studies have demonstrated the potential of cold rolling to produce W sheets, which are ductile at room temperature and exhibit a BDT temperature of 208 K. In order to assess the thermal stability of these materials, we conducted isothermal heat treatments (at 1300 K, for annealing durations between 0.1 h and 210 h) combined with studies on the evolution of mechanical properties and microstructure of a severely deformed undoped W sheet. With this work, we demonstrate the need for a stabilized microstructure before utilization of cold-rolled W in high-temperature applications can take place successfully. After annealing at 1300 K for 6 h, the material properties changed remarkably: The BDT temperature increases from 208 K to 473 K and the sharp BDT of the as-rolled condition transforms into a wide transition regime spanning over more than 200 K. This means in fact, an endangered structural integrity at room temperature. We also address the so-called phenomenon of 45° embrittlement of W sheets. Here we show that cleavage fracture in strongly textured W sheets always takes place with an inclination angle of 45° to the rolling direction, independent of the studied material condition, whether as-rolled or annealed. An in-depth study of the microstructure indicates a correlation between an increased BDT temperature caused by annealing and microstructural coarsening presumably by extended recovery. We conclude that 45° embrittlement needs to be comprehended as a combined effect of an increased spacing between grain boundaries along the crack front, leading to an increased BDT, and a high orientation density of the rotated cube component or texture components close to that, which determine the preferred crack propagation of 45° to the rolling direction.