Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonnekoh, Carsten

  • Google
  • 13
  • 51
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Additive manufacturing of novel complex tungsten components via electron beam melting: Basic properties and evaluation of the high heat flux behaviorcitations
  • 2024Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloycitations
  • 2024Tungsten alloys R&D program at KITcitations
  • 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminatescitations
  • 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates17citations
  • 2021Der Spröd-duktil-Übergang in ultrafeinkörnigem Wolframcitations
  • 2021Technological Processes for Steel Applications in Nuclear Fusioncitations
  • 2020Elucidating the microstructure of tungsten composite materials produced by powder injection moldingcitations
  • 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: the rate-limiting mechanism of plasticity controlling the BDT in ultrafine-grained tungsten26citations
  • 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement13citations
  • 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement13citations
  • 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: Contributions of grain and subgrain boundaries to the enhanced ductility after pre-deformationcitations
  • 2017Reducing the brittle-to-ductile transition temperature of tungsten to − 50 °C by cold rollingcitations

Places of action

Chart of shared publication
Hanemann, Thomas
1 / 40 shared
Ehrhardt, Marco
1 / 1 shared
Konrad, Joachim
1 / 1 shared
Antusch, Steffen
4 / 21 shared
Greuner, Henri
1 / 1 shared
Dietrich, Stefan
1 / 25 shared
Ghidersa, Bradut Eugen
1 / 1 shared
Rieth, Michael
11 / 58 shared
Baumgärtner, Siegfried
1 / 6 shared
Jung, Judith
1 / 4 shared
Guttmann, Markus
1 / 11 shared
Klein, Alexander
1 / 15 shared
Dorow-Gerspach, Daniel
1 / 4 shared
Böswirth, Bernd
1 / 1 shared
Rohwerder, Michael
1 / 19 shared
Prabhakar, J. Manoj
1 / 1 shared
Schwarz, Tim M.
1 / 3 shared
Jovičević-Klug, Patricia
1 / 1 shared
Giesbrecht, Cristiano Kasdorf
1 / 2 shared
Lied, Philipp
4 / 5 shared
Knabl, Wolfram
1 / 6 shared
Hoffmann, Andreas
5 / 9 shared
Bakaev, Alexander
2 / 12 shared
Zinovev, Aleksandr
2 / 17 shared
Reiser, Jens
6 / 8 shared
Terentyev, Dmitry
2 / 18 shared
Yin, Chao
2 / 5 shared
Chang, Chih-Cheng
2 / 5 shared
Dürrschnabel, Michael
1 / 9 shared
Bonk, Simon
2 / 3 shared
Ghidersa, Bradut-Eugen
1 / 1 shared
Pintsuk, Gerald
1 / 5 shared
Jäntsch, Ute
2 / 9 shared
Bergfeldt, Thomas
1 / 9 shared
Aiello, Giacomo
1 / 2 shared
Zeile, Christian
1 / 3 shared
Neuberger, Heiko
1 / 8 shared
Simondon, Esther
1 / 2 shared
Klimenkov, Michael
1 / 11 shared
Rey, Jörg
1 / 5 shared
Hoffmann, Jan
2 / 14 shared
Baumgaertner, Siegfried
1 / 2 shared
Duerrschnabel, Michael
1 / 12 shared
Jaentsch, Ute
1 / 1 shared
Holtermann, Birger
1 / 1 shared
Hoffmann, Mirjam
1 / 1 shared
Hartmaier, Alexander
1 / 54 shared
Karcher, Thomas
2 / 2 shared
Leiste, Harald
2 / 9 shared
Pantleon, Wolfgang
2 / 37 shared
Zaefferer, Stefan
1 / 26 shared
Chart of publication period
2024
2022
2021
2020
2017

Co-Authors (by relevance)

  • Hanemann, Thomas
  • Ehrhardt, Marco
  • Konrad, Joachim
  • Antusch, Steffen
  • Greuner, Henri
  • Dietrich, Stefan
  • Ghidersa, Bradut Eugen
  • Rieth, Michael
  • Baumgärtner, Siegfried
  • Jung, Judith
  • Guttmann, Markus
  • Klein, Alexander
  • Dorow-Gerspach, Daniel
  • Böswirth, Bernd
  • Rohwerder, Michael
  • Prabhakar, J. Manoj
  • Schwarz, Tim M.
  • Jovičević-Klug, Patricia
  • Giesbrecht, Cristiano Kasdorf
  • Lied, Philipp
  • Knabl, Wolfram
  • Hoffmann, Andreas
  • Bakaev, Alexander
  • Zinovev, Aleksandr
  • Reiser, Jens
  • Terentyev, Dmitry
  • Yin, Chao
  • Chang, Chih-Cheng
  • Dürrschnabel, Michael
  • Bonk, Simon
  • Ghidersa, Bradut-Eugen
  • Pintsuk, Gerald
  • Jäntsch, Ute
  • Bergfeldt, Thomas
  • Aiello, Giacomo
  • Zeile, Christian
  • Neuberger, Heiko
  • Simondon, Esther
  • Klimenkov, Michael
  • Rey, Jörg
  • Hoffmann, Jan
  • Baumgaertner, Siegfried
  • Duerrschnabel, Michael
  • Jaentsch, Ute
  • Holtermann, Birger
  • Hoffmann, Mirjam
  • Hartmaier, Alexander
  • Karcher, Thomas
  • Leiste, Harald
  • Pantleon, Wolfgang
  • Zaefferer, Stefan
OrganizationsLocationPeople

article

The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement

  • Hoffmann, Andreas
  • Rieth, Michael
  • Karcher, Thomas
  • Reiser, Jens
  • Bonnekoh, Carsten
  • Leiste, Harald
  • Pantleon, Wolfgang
Abstract

The high brittle-to-ductile transition (BDT) temperature of conventionally produced tungsten (W), challenges the design of W-based structural components. Recent studies have demonstrated the potential of cold rolling to produce W sheets, which are ductile at room temperature and exhibit a BDT temperature of 208 K. In order to assess the thermal stability of these materials, we conducted isothermal heat treatments (at 1300 K, for annealing durations between 0.1 h and 210 h) combined with studies on the evolution of mechanical properties and microstructure of a severely deformed undoped W sheet. With this work, we demonstrate the need for a stabilized microstructure before utilization of cold-rolled W in high-temperature applications can take place successfully. After annealing at 1300 K for 6 h, the material properties changed remarkably: The BDT temperature increases from 208 K to 473 K and the sharp BDT of the as-rolled condition transforms into a wide transition regime spanning over more than 200 K. This means in fact, an endangered structural integrity at room temperature. We also address the so-called phenomenon of 45° embrittlement of W sheets. Here we show that cleavage fracture in strongly textured W sheets always takes place with an inclination angle of 45° to the rolling direction, independent of the studied material condition, whether as-rolled or annealed. An in-depth study of the microstructure indicates a correlation between an increased BDT temperature caused by annealing and microstructural coarsening presumably by extended recovery. We conclude that 45° embrittlement needs to be comprehended as a combined effect of an increased spacing between grain boundaries along the crack front, leading to an increased BDT, and a high orientation density of the rotated cube component or texture components close to that, which determine the preferred crack propagation of 45° to the rolling direction.

Topics
  • density
  • grain
  • crack
  • texture
  • annealing
  • cold rolling
  • tungsten
  • ductility