Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sahu, A. K.

  • Google
  • 2
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022 Experimental investigation on microwave sintered composite tool for electro-discharge machining of Titanium alloy5citations
  • 2016Pressureless sintering of chromium diboride using spark plasma sintering facility14citations

Places of action

Chart of shared publication
Mahapatra, S. S.
1 / 3 shared
Singh, H.
1 / 17 shared
Bhoi, N. K.
1 / 1 shared
Leite, M.
1 / 2 shared
Sonber, J. K.
1 / 9 shared
Bedse, R. D.
1 / 3 shared
Chakravartty, J. K.
1 / 5 shared
Sairam, K.
1 / 11 shared
Chart of publication period
2022
2016

Co-Authors (by relevance)

  • Mahapatra, S. S.
  • Singh, H.
  • Bhoi, N. K.
  • Leite, M.
  • Sonber, J. K.
  • Bedse, R. D.
  • Chakravartty, J. K.
  • Sairam, K.
OrganizationsLocationPeople

article

Pressureless sintering of chromium diboride using spark plasma sintering facility

  • Sonber, J. K.
  • Sahu, A. K.
  • Bedse, R. D.
  • Chakravartty, J. K.
  • Sairam, K.
Abstract

<p>Sinterability of monolithic CrB<sub>2</sub> was investigated under pressureless sintering condition using spark plasma sintering facility (SPS). Monolithic chromium diboride (CrB<sub>2</sub>) was sintered in a modified die setup instead of traditional/conventional plunger and die assembly. This kind of assembly creates pressureless sintering conditions in spark plasma sintering unit. The main objective of this modified setup is to couple the combined aspect of conventional pressureless sintering with fast heating. Densification experiments using CrB<sub>2</sub> were conducted at temperatures in the range of 1600 °C to 2000 °C with different dwelling period (1-30 min) under no load condition. The effect of multi-step sintering treatment on the densification behaviour of CrB<sub>2</sub> was also investigated. The density and the resulted microstructures of the sintered samples are presented and discussed in this paper.</p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • chromium
  • experiment
  • sintering
  • densification