People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kærn, Martin Ryhl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Experimental indirect cooling performance analysis of the metal 3D-printed cold plates with two different supporting elementscitations
- 2022Experimental Cooling Performance Analysis of The Metal Additive-Manufactured Cold Plate With Body-Centered Cubic (BCC) Elements for Indirect Cooling Applications
- 2011Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporatorscitations
- 2011Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporatorscitations
- 2011Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems
Places of action
Organizations | Location | People |
---|
article
Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators
Abstract
Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each individual maldistribution source in an independent manner. Therefore, the evaporator and the condenser were simplified to be straight tubes for the purposes of this study. The numerical model of the R410A system, its verification and an investigation of individual maldistribution sources are presented in this paper. The maldistribution sources of interest were: inlet liquid/vapor phase distribution, feeder tube bending and airflow distribution. The results show that maldistribution reduced the cooling capacity and the coefficient of performance of the system. In particular, different phase distribution and non-uniform airflow distribution reduced the performance significantly. Different feeder tube bendings only caused a minor decrease in performance.