Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palmelund, Henrik

  • Google
  • 1
  • 2
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Enabling formulations of aprepitant15citations

Places of action

Chart of shared publication
Rantanen, Jukka
1 / 43 shared
Löbmann, Korbinian
1 / 49 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Rantanen, Jukka
  • Löbmann, Korbinian
OrganizationsLocationPeople

article

Enabling formulations of aprepitant

  • Rantanen, Jukka
  • Palmelund, Henrik
  • Löbmann, Korbinian
Abstract

<p>A deep eutectic solvent (DES) is a eutectic system consisting of hydrogen bond donor and acceptor has been suggested as a promising formulation strategy for poorly soluble drugs. A DES consisting of choline chloride and levulinic acid in a 1:2 molar ratio was used to formulate a liquid solution of the model drug aprepitant. This formulation was tested in vitro (drug release and permeability) and in vivo (rat model) and compared with the performance of amorphous aprepitant and the commercial aprepitant nanocrystalline formulation. In this study a DES formulation is compared for the first time directly to other established enabling formulations. The in vitro drug release study demonstrated that the DES formulation and the amorphous form both were able to induce an apparent supersaturation followed by subsequent drug precipitation. To mitigate the risk of precipitation, HPMC was predissolved in the dissolution medium, which successfully reduced the degree of precipitation. In line with the results from the release study, an in vitro permeation study showed superior permeation of the drug from the DES formulation and from the amorphous form compared to the nanocrystalline formulation. However, the promising in vitro findings could not be directly translated into an increased in vivo performance in rats compared to the nanocrystalline formulation. Whilst the DES formulation (34 ± 4%) showed a higher oral bioavailability compared to amorphous aprepitant (20 ± 4%), it was on par with the oral bioavailability obtained from the nanocrystalline formulation (36 ± 2%).</p>

Topics
  • impedance spectroscopy
  • amorphous
  • Hydrogen
  • precipitation
  • permeability