People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dobie, Gordon
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024CNN-based automated approach to crack-feature detection in steam cycle componentscitations
- 2023Flexible and automated robotic multi-pass arc welding
- 2023Application of machine learning techniques for defect detection, localisation, and sizing in ultrasonic testing of carbon fibre reinforced polymers
- 2023Mapping SEARCH capabilities to Spirit AeroSystems NDE and automation demand for composites
- 2023Tactile, orientation, and optical sensor fusion for tactile breast image mosaickingcitations
- 2023Driving towards flexible and automated robotic multi-pass arc welding
- 2022Automated bounding box annotation for NDT ultrasound defect detection
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2021A cost-function driven adaptive welding framework for multi-pass robotic weldingcitations
- 2021Non-contact in-process ultrasonic screening of thin fusion welded jointscitations
- 2021Miniaturised SH EMATs for fast robotic screening of wall thinning in steel platescitations
- 2020Quantifying impacts on remote photogrammetric inspection using unmanned aerial vehiclescitations
- 2019Electromagnetic acoustic transducers for guided-wave based robotic inspection
- 2019Towards guided wave robotic NDT inspection
- 2018Machining-based coverage path planning for automated structural inspectioncitations
- 2017Assessment of corrosion under insulation and engineered temporary wraps using pulsed eddy-current techniques
- 2017An expert-systems approach to automatically determining flaw depth within candu pressure tubes
- 2016Robotic ultrasonic testing of AGR fuel claddingcitations
- 2016Conformable eddy current array deliverycitations
- 2014Automatic ultrasonic robotic arraycitations
- 2013The feasibility of synthetic aperture guided wave imaging to a mobile sensor platformcitations
Places of action
Organizations | Location | People |
---|
article
CNN-based automated approach to crack-feature detection in steam cycle components
Abstract
Periodic manual inspection by trained specialists is an important element of asset management in the nuclear industry. Detection of cracks caused by stress corrosion is an important element of remote visual inspection (RVI) in power plant steam generator components such as boilers, superheaters and reheaters. Challenges exist in the interpretation of RVI footage, such as high degree of concentration for reviewing lengthy and disorienting footage due to narrow field of view offered by endoscope. Deep learning is considered useful to automate crack detection process for improved efficiency and accuracy, and has enjoyed success in related applications. This article utilises a new application of automated crack feature detection in steam cycle components to demonstrate a transferrable data-driven framework for a variety of anomaly inspections in such structures. Specifically, a case study of superheater (a type of reactor pressure vessel head) anomaly inspection is presented to automatically detect regions of crack-like features in inspection footage with a good accuracy of 92.97% using convolutional neural network (CNN), even in challenging cases. Due to the black-box nature of the CNN classification, the explicability of the classification results is discussed to enhance the trustworthiness of the detection system.