People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Venkata, Kiranmayi Abburi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Accurate numerical prediction of thermo-mechanical behaviour and phase fractions in SLM components of advanced high strength steels for automotive applicationscitations
- 2016Characterising electron beam welded dissimilar metal joints to study residual stress relaxation from specimen extractioncitations
- 2016Interaction of Residual Stresses With Applied Stresses in a Dissimilar Metal Electron Beam Welded Specimencitations
- 2016Relaxation of residual stresses when extracting a specimen from a dissimilar metal electron beam welded plate
- 2015Characterising Residual Stresses in a Dissimilar Metal Electron Beam Welded Platecitations
- 2014Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel platescitations
- 2013Residual stresses in laser welded ASTM A387 Grade 91 steel platescitations
- 2013Finite Element Simulation of Laser Welding in a P91 Steel Platecitations
Places of action
Organizations | Location | People |
---|
document
Characterising electron beam welded dissimilar metal joints to study residual stress relaxation from specimen extraction
Abstract
Nuclear power plants require dissimilar metal weld joints to connect the primary steam generator made from ferritic steel to the intermediate heat exchanger made from austenitic steel. Such joints are complex because of the mismatch in the thermal and the mechanical properties of the materials used in the joint. Electron Beam (EB) welding is emerging as a promising technique to manufacture dissimilar joints providing a great many advantages over conventional welding techniques, in terms of low heat input, high heat intensity, narrow fusion and heat affected zones, deeper penetration and increased welding speeds. However before this method can be considered for implementation in an actual plant, it is essential for a careful and a comprehensive outlining of the joint characteristics and the apparent effects on performance during service. In the present study, an EB welded joint was manufactured using austenitic AISI 316LN stainless steel and a ferritic-martensitic P91 steel, without the addition of filler material. Neutron diffraction measurement was conducted on the welded plate to measure the residual stress distribution across the weld as well as through the thickness of the plate. A finite element analysis was conducted on a two-dimensional cross-sectional model using ABAQUS code to simulate the welding process and predict the residual stresses, implementing the effects of solid-state phase transformation experienced by P91 steel. The predicted residual stresses were transferred to a 3D finite element model of the plate to simulate the machining and extraction of a C(T) blank specimen from the welded plate and the extent of stress relaxation is studied.