Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nagaraja, Swaroop Gaddikere

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Variational formulation of Cahn–Hilliard-type diffusion coupled with crystal plasticity2citations

Places of action

Chart of shared publication
Flachberger, Wolfgang
1 / 1 shared
Antretter, Thomas
1 / 37 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Flachberger, Wolfgang
  • Antretter, Thomas
OrganizationsLocationPeople

article

Variational formulation of Cahn–Hilliard-type diffusion coupled with crystal plasticity

  • Flachberger, Wolfgang
  • Nagaraja, Swaroop Gaddikere
  • Antretter, Thomas
Abstract

This article presents a relatively general framework for the description of the Cahn–Hilliard-type diffusion in solids undergoing infinitesimal elastic and plastic deformations. The coupled chemo-mechanical problem, characterised by phenomena such as phase segregation, microstructure coarsening and swelling, is treated using the variational framework which is governed by continuous-time, discrete-time and discrete-space–time incremental variational principles. It is shown that the governing equations of the coupled problem can be derived as Euler equations of minimisation and saddle point principles. A point of departure from the existing works is the coupling of crystal plasticity to the problem of diffusion and optimising the potential with respect to the plastic variables such that they are solved locally at the integration points. This is done using a return map algorithm which results in a reduced global problem. The variational framework results in a system of symmetric non-linear algebraic equations that are solved by Newton–Raphson-type iterative methods. This is a novel and attractive feature with respect to numerical implementation, as models resulting from the proposed variational framework are computationally less expensive in comparison with non-symmetric formulations. The numerical simulations presented at the end predict the applicability of models resulting from the proposed variational framework for multiple scenarios.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • phase
  • simulation
  • laser emission spectroscopy
  • plasticity
  • crystal plasticity