People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarnota, Christophe
Laboratory of Microstructure Studies and Mechanics of Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Spark plasma sintering and mechanical properties of two grades of <scp>PEKK</scp> presenting different Tere/Iso ratios
- 2024Experimental and Numerical Analysis of Aluminum-Polyethylene Composite Structure Subjected to Tension and Perforation Under Dynamic Loading for a Wide Range of Temperaturescitations
- 2023Lateral ring compression test applied to a small caliber steel jacket: Identification of a constitutive modelcitations
- 2021Extension of 1D linear stability analysis based on the Bridgman assumption. Applications to the dynamic stretching of a plate and expansion of a ringcitations
- 2020Steady shock waves in porous metals: Viscosity and micro-inertia effectscitations
- 2020Dynamic response of ductile materials containing cylindrical voidscitations
- 2020Extension of linear stability analysis for the dynamic stretching of plates: Spatio-temporal evolution of the perturbationcitations
- 2018Shock structure in porous metals: The interplay of material strain rate dependency with micro-inertia effects
- 2015A predictive hybrid force modeling in turning: application to stainless steel dry machining with a coated groove toolcitations
- 2014Modeling of the abrasive tool wear in metal cutting: Influence of the sliding-sticking contact zones
- 2014A new abrasive wear law for the sticking and sliding contacts when machining metallic alloyscitations
- 2013Analytical stochastic modeling and experimental investigation on abrasive wear when turning difficult to cut materialscitations
- 2013Statistical approach for modeling abrasive tool wear and experimental validation when turning the difficult to cut Titanium Alloys Ti6Al4Vcitations
- 2013Experimental Parameters Identification of Fatigue Damage Model for Short Glass Fiber Reinforced Thermoplastics GFRPcitations
- 2013Modeling of the abrasive tool wear in metal cutting: Influence of the sliding-sticking contact zones
- 2013Modeling of velocity-dependent chip flow angle and experimental analysis when machining 304L austenitic stainless steel with groove coated-carbide toolscitations
- 2008Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalumcitations
- 2006Ductile damage of metallic materials under dynamic loading – Application to spalling
Places of action
Organizations | Location | People |
---|
article
Steady shock waves in porous metals: Viscosity and micro-inertia effects
Abstract
The structure of steady shock waves in porous solids is a complex phenomenon involving in general the interplay of micro-inertia effects with the nonlinear elastic viscoplastic matrix response. Micro-inertia effects are due to the important acceleration of material particles in the vicinity of collapsing voids. By adopting the analytical approach recently developed for porous metals by Czarnota et al. [J. Mech. Phys. Solids 107 (2017)], we analyze the effects of matrix rate sensitivity, shock stress amplitude and micro-inertia on the structure of planar shock waves. We also analyze the relationship that links the strain rate within the shock to the jump of the stress across the shock. The fourth power law experimentally revealed for dense metals, Swegle & Grady [J. Appl. Phys. 58 (1985)] does not hold for heterogeneous materials. By considering the case of porous aluminum, we show that this relationship is characterized by two distinct regimes: (i) the first regime holds for weak shock intensities and is representative of the viscoplastic response of the dense matrix material, (ii) the second regime, that holds for shock of higher amplitude, is dominated by micro-inertia effects and is strongly influenced by the pore size. Micro-inertia effects appear to be quite beneficial since they are conducive to shock mitigation by attenuating the level of strain rate and of acceleration sustained by material particles.