Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sedighiani, Karo

  • Google
  • 11
  • 44
  • 641

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Comparative analysis of crystal plasticity models in predicting deformation texture in IF-Steel1citations
  • 2024Anisotropic power diagrams for polycrystal modelling: efficient generation of curved grains via optimal transport2citations
  • 2022Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain rates25citations
  • 2022Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steel35citations
  • 2022Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity models62citations
  • 2022Crystal Plasticity Simulation of in-grain Microstructural Evolution during Large Plastic Deformationcitations
  • 2021Topological aspects responsible for recrystallization evolution in an IF-steel sheet – Investigation with cellular-automaton simulations16citations
  • 2021Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing35citations
  • 2020Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels178citations
  • 2020Current challenges and opportunities in microstructure-related properties of advanced high-strength steels178citations
  • 2020An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves109citations

Places of action

Chart of shared publication
Galan-Lopez, J.
1 / 2 shared
Ochoa Avendaño, Jhon
1 / 1 shared
Kestens, Leo A. I.
1 / 14 shared
Bos, C.
2 / 14 shared
Buze, Maciej
1 / 2 shared
Feydy, Jean
1 / 1 shared
Bourne, David P.
1 / 2 shared
Roper, Steven M.
1 / 2 shared
Dokkum, J. S. Van
1 / 1 shared
Roters, F.
2 / 51 shared
Diehl, M.
2 / 10 shared
Shah, V.
1 / 2 shared
Sietsma, Jilt
5 / 44 shared
Raabe, Dierk
6 / 523 shared
Diehl, Martin
5 / 29 shared
Roters, Franz
5 / 39 shared
Traka, Konstantina
4 / 5 shared
Angenendt, Katja
1 / 2 shared
Lopez, Jesus Galan
1 / 1 shared
Bos, Cornelis
1 / 4 shared
Shah, Vitesh
3 / 6 shared
Wong, Su-Leen
2 / 2 shared
Gault, Baptiste
2 / 45 shared
Kusampudi, Navyanth
2 / 4 shared
Ponge, Dirk
2 / 49 shared
Herbig, Michael
2 / 21 shared
Zaefferer, Stefan
2 / 26 shared
Filho, Isnaldi R. Souza
1 / 2 shared
Sukumar, Prithiv Thoudden
1 / 1 shared
Katnagallu, Shyam
2 / 9 shared
Baron, Christian
2 / 2 shared
Sun, Binhan
2 / 4 shared
Silva, Alisson Kwiatkowski Da
1 / 2 shared
Jägle, Eric
2 / 5 shared
Liebscher, Christian H.
2 / 10 shared
Kürnsteiner, Philipp
2 / 9 shared
Stephenson, Leigh
2 / 5 shared
Springer, Hauke
2 / 25 shared
Yen, Hung-Wei
2 / 5 shared
Kwiatkowski Da Silva, Alisson
1 / 4 shared
Thoudden Sukumar, Prithiv
1 / 2 shared
Souza Filho, Isnaldi R.
1 / 5 shared
Traka, K.
1 / 5 shared
Raabe, D.
1 / 79 shared
Chart of publication period
2024
2022
2021
2020

Co-Authors (by relevance)

  • Galan-Lopez, J.
  • Ochoa Avendaño, Jhon
  • Kestens, Leo A. I.
  • Bos, C.
  • Buze, Maciej
  • Feydy, Jean
  • Bourne, David P.
  • Roper, Steven M.
  • Dokkum, J. S. Van
  • Roters, F.
  • Diehl, M.
  • Shah, V.
  • Sietsma, Jilt
  • Raabe, Dierk
  • Diehl, Martin
  • Roters, Franz
  • Traka, Konstantina
  • Angenendt, Katja
  • Lopez, Jesus Galan
  • Bos, Cornelis
  • Shah, Vitesh
  • Wong, Su-Leen
  • Gault, Baptiste
  • Kusampudi, Navyanth
  • Ponge, Dirk
  • Herbig, Michael
  • Zaefferer, Stefan
  • Filho, Isnaldi R. Souza
  • Sukumar, Prithiv Thoudden
  • Katnagallu, Shyam
  • Baron, Christian
  • Sun, Binhan
  • Silva, Alisson Kwiatkowski Da
  • Jägle, Eric
  • Liebscher, Christian H.
  • Kürnsteiner, Philipp
  • Stephenson, Leigh
  • Springer, Hauke
  • Yen, Hung-Wei
  • Kwiatkowski Da Silva, Alisson
  • Thoudden Sukumar, Prithiv
  • Souza Filho, Isnaldi R.
  • Traka, K.
  • Raabe, D.
OrganizationsLocationPeople

article

An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves

  • Sedighiani, Karo
  • Sietsma, Jilt
  • Roters, F.
  • Traka, K.
  • Diehl, M.
  • Raabe, D.
Abstract

A severe obstacle for the routine use of crystal plasticity models is the effort associated with determining their constitutive parameters. Obtaining these parameters usually requires time-consuming micromechanical tests that allow probing of individual grains. In this study, a novel, computationally efficient, and fully automated approach is introduced which allows the identification of constitutive parameters from macroscopic tests. The approach presented here uses the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. It is especially suited for complex models with a large number of parameters. The proposed approach also helps to develop a quantitative and thorough understanding of the relative influence of the different constitutive parameters and their interactions. Such general insights into parameter relations in complex models can be used to improve constitutive laws and reduce redundancy in parameter sets. The merits of the methodology are demonstrated on the examples of a dislocation-density-based crystal plasticity model for bcc steel, a phenomenological crystal plasticity model for fcc copper, and a phenomenological crystal plasticity model incorporating twinning deformation for hcp magnesium. The approach proposed is, however, model-independent and can be also used to identify parameters of, for instance, fatigue, creep and damage models. The method has been implemented into the Düsseldorf Advanced Material Simulation Kit (DAMASK) and is available as free and open-source software. The capability of translating complex material response into a micromechanical digital twin is an essential precondition for the ongoing digitalization of material property prediction, quality control of semi-finished parts, material response in manufacturing and the long-term behavior of products and materials when in service. ; (OLD) MSE-3 ; Materials Science and Engineering

Topics
  • density
  • impedance spectroscopy
  • surface
  • grain
  • simulation
  • Magnesium
  • Magnesium
  • steel
  • stress-strain curve
  • fatigue
  • dislocation
  • copper
  • plasticity
  • crystal plasticity
  • creep