People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birosca, Soran
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Probing the temperature field and residual stress transformation in multi-track, multi-layered systemcitations
- 2024The corrosion mechanism of grey cast-iron yacht keel in marine environment during long-term exposure
- 2023A study of high cycle fatigue life and its correlation with microstructural parameters in IN713C nickel-based superalloycitations
- 2021Crystallographic orientation influence on slip system activation and deformation mechanisms in Waspaloy during in-situ mechanical loadingcitations
- 2020Mechanistic approach of Goss abnormal grain growth in electrical steelcitations
- 2020The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloycitations
- 2020On the correlation between magnetic domain and crystallographic grain orientation in grain oriented electrical steelscitations
- 2019Crystallographic orientation relationship with geometrically necessary dislocation accumulation during high-temperature deformation in RR1000 nickel-based superalloycitations
- 2019The dislocation behaviour and GND development in a nickel based superalloy during creepcitations
- 2018The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloycitations
- 2018A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloycitations
- 2017Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356-T61 aluminum alloyscitations
- 2017The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel.
- 2017The effect of a two-stage heat-treatment on the microstructural and mechanical properties of a maraging steelcitations
- 2016The effect of strain distribution on microstructural developments during forging in a newly developed nickel base superalloycitations
- 2016The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in aircitations
- 2016Deformation mechanisms of IN713C nickel based superalloy during Small Punch Testingcitations
- 2015Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction techniquecitations
- 2011A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weldcitations
- 20113-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloycitations
- 20093D characterisation of short fatigue crack in Ti 6246
- 2009Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffractioncitations
- 2008Texture evolution in grain-oriented electrical steel during hot band annealing and cold rollingcitations
- 2007Influence of Normalizing Conditions on Electrical Steel Texture Development
- 2005Phase identification of oxide scale on low carbon steelcitations
- 2005Phase determination and microstructure of oxide scales formed on steel at high temperaturecitations
Places of action
Organizations | Location | People |
---|
article
The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloy
Abstract
<p>The polycrystalline IN713C produced via investment casting is one of the widely-used nickel-based superalloy in automotive and aerospace industries. This alloy, however, has an apparent inhomogeneous microstructure generated during casting and contains dendritic structure that gives rise to strain localisation during loading. Yet, the effect of dendritic structure, grain size and shape as well as crystallographic orientation, which directly influence fatigue property and deformation micromechanism in the components, is rarely studied. In the present study, IN713C cast bars are tailored with three different grain structures, i.e., transition, equiaxed and columnar, with substantial grain size variations. The produced bars were tested under strain controlled LCF (Low Cycle Fatigue) and stress controlled HCF (High Cycle Fatigue) conditions at 650 °C. The results showed that most of fatigue cracks initiated from casting pores and fatigue life extended in the microstructure with a small grain size during both HCF and LCF loadings. It is also demonstrated that fatigue striations were mainly observed within dendritic areas during crack propagation, whereas the higher GND (Geometrically Necessary Dislocation) density were predominantly observed in the interdendritic areas. Here, we propose a concept of 'Crack Propagation Unit (CPU)' for better description of deformation mechanism at local scale during fatigue loading by combining fracture surface characteristic methodology and dislocation distribution analyses within the dendritic structural unit. Furthermore, this model to understand the deformation micromechanism can provide a new perspective on the interpretation of Hall-Petch relationship in casting materials that contain dendritic structure. This is further demonstrated via direct correlation of the high crack propagation resistance with the crack path divergence instead of the dislocation pile-up at the grain boundary or in-between the γ/γ′ channels. Moreover, by utilising serial sectioning method followed by layered EBSD scanning, quasi-3-D grain orientation mappings were obtained, and crystallographic texture information were directly correlated with the fracture surface observations. This allowed an investigation of the influence of orientation of individual grains and micro/macro texture on crack propagation rate. The critical stage of crack propagation in fatigue life and its correlations with microstructural features is established, offering potential practical applications by controlling the investment casting process parameters.</p>